BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 9448275)

  • 41. Differential temperature-dependent chaperone-like activity of alphaA- and alphaB-crystallin homoaggregates.
    Datta SA; Rao CM
    J Biol Chem; 1999 Dec; 274(49):34773-8. PubMed ID: 10574947
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Alpha-crystallin and ATP facilitate the in vitro renaturation of xylanase: enhancement of refolding by metal ions.
    Nath D; Rawat U; Anish R; Rao M
    Protein Sci; 2002 Nov; 11(11):2727-34. PubMed ID: 12381854
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deamidation affects structural and functional properties of human alphaA-crystallin and its oligomerization with alphaB-crystallin.
    Gupta R; Srivastava OP
    J Biol Chem; 2004 Oct; 279(43):44258-69. PubMed ID: 15284238
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mimicking phosphorylation of alphaB-crystallin affects its chaperone activity.
    Ecroyd H; Meehan S; Horwitz J; Aquilina JA; Benesch JL; Robinson CV; Macphee CE; Carver JA
    Biochem J; 2007 Jan; 401(1):129-41. PubMed ID: 16928191
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of chaperone function using citrate synthase as nonnative substrate protein.
    Buchner J; Grallert H; Jakob U
    Methods Enzymol; 1998; 290():323-38. PubMed ID: 9534173
    [No Abstract]   [Full Text] [Related]  

  • 46. Lens epithelial cells derived from alphaB-crystallin knockout mice demonstrate hyperproliferation and genomic instability.
    Andley UP; Song Z; Wawrousek EF; Brady JP; Bassnett S; Fleming TP
    FASEB J; 2001 Jan; 15(1):221-229. PubMed ID: 11149910
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The small heat-shock protein αB-crystallin uses different mechanisms of chaperone action to prevent the amorphous versus fibrillar aggregation of α-lactalbumin.
    Kulig M; Ecroyd H
    Biochem J; 2012 Dec; 448(3):343-52. PubMed ID: 23005341
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interaction of human recombinant alphaA- and alphaB-crystallins with early and late unfolding intermediates of citrate synthase on its thermal denaturation.
    Rajaraman K; Raman B; Ramakrishna T; Rao CM
    FEBS Lett; 2001 May; 497(2-3):118-23. PubMed ID: 11377425
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies.
    Pasta SY; Raman B; Ramakrishna T; Rao ChM
    Mol Vis; 2004 Sep; 10():655-62. PubMed ID: 15448619
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanism of chaperone function in small heat-shock proteins. Phosphorylation-induced activation of two-mode binding in alphaB-crystallin.
    Koteiche HA; McHaourab HS
    J Biol Chem; 2003 Mar; 278(12):10361-7. PubMed ID: 12529319
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Zebrafish alpha-crystallins: protein structure and chaperone-like activity compared to their mammalian orthologs.
    Dahlman JM; Margot KL; Ding L; Horwitz J; Posner M
    Mol Vis; 2005 Jan; 11():88-96. PubMed ID: 15692462
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The structural differences between bovine lens alphaA- and alphaB-crystallin.
    Abgar S; Backmann J; Aerts T; Vanhoudt J; Clauwaert J
    Eur J Biochem; 2000 Oct; 267(19):5916-25. PubMed ID: 10998051
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Paradoxical effects of substitution and deletion mutation of Arg56 on the structure and chaperone function of human alphaB-crystallin.
    Biswas A; Goshe J; Miller A; Santhoshkumar P; Luckey C; Bhat MB; Nagaraj RH
    Biochemistry; 2007 Feb; 46(5):1117-27. PubMed ID: 17260942
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The lack of chaperonelike activity of Caenorhabditis elegans Hsp12.2 cannot be restored by domain swapping with human alphaB-crystallin.
    Kokke BP; Boelens WC; de Jong WW
    Cell Stress Chaperones; 2001 Oct; 6(4):360-7. PubMed ID: 11795473
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chaperone-independent mitochondrial translocation and protection by αB-crystallin in RPE cells.
    McGreal RS; Brennan LA; Kantorow WL; Wilcox JD; Wei J; Chauss D; Kantorow M
    Exp Eye Res; 2013 May; 110():10-7. PubMed ID: 23466869
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The small heat shock proteins Hsp20 and alphaB-crystallin in cultured cardiac myocytes: differences in cellular localization and solubilization after heat stress.
    van de Klundert FA; de Jong WW
    Eur J Cell Biol; 1999 Aug; 78(8):567-72. PubMed ID: 10494863
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Distinct chaperone mechanisms can delay the formation of aggresomes by the myopathy-causing R120G alphaB-crystallin mutant.
    Chávez Zobel AT; Loranger A; Marceau N; Thériault JR; Lambert H; Landry J
    Hum Mol Genet; 2003 Jul; 12(13):1609-20. PubMed ID: 12812987
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The beta4-beta8 groove is an ATP-interactive site in the alpha crystallin core domain of the small heat shock protein, human alphaB crystallin.
    Ghosh JG; Houck SA; Doneanu CE; Clark JI
    J Mol Biol; 2006 Dec; 364(3):364-75. PubMed ID: 17022999
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cell penetration peptides for enhanced entry of αB-crystallin into lens cells.
    Mueller NH; Ammar DA; Petrash JM
    Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):2-8. PubMed ID: 23150610
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microbial molecular chaperones.
    Lund PA
    Adv Microb Physiol; 2001; 44():93-140. PubMed ID: 11407116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.