These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 9448840)
1. Direct fluorometry of phase-extracted tryptamine-based fast quantitative assay of L-tryptophan decarboxylase from Catharanthus roseus leaf. Sangwan RS; Mishra S; Kumar S Anal Biochem; 1998 Jan; 255(1):39-46. PubMed ID: 9448840 [TBL] [Abstract][Full Text] [Related]
2. Expression of the Arabidopsis feedback-insensitive anthranilate synthase holoenzyme and tryptophan decarboxylase genes in Catharanthus roseus hairy roots. Hong SB; Peebles CA; Shanks JV; San KY; Gibson SI J Biotechnol; 2006 Mar; 122(1):28-38. PubMed ID: 16188339 [TBL] [Abstract][Full Text] [Related]
3. Assay of tryptophan decarboxylase from Catharanthus roseus plant cell cultures by high-performance liquid chromatography. Pennings EJ; Hegger I; van der Heijden R; Duine JA; Verpoorte R Anal Biochem; 1987 Aug; 165(1):133-6. PubMed ID: 3688427 [TBL] [Abstract][Full Text] [Related]
4. Probing the role of tryptophan-derived secondary metabolism in defense responses against Bipolaris oryzae infection in rice leaves by a suicide substrate of tryptophan decarboxylase. Ishihara A; Nakao T; Mashimo Y; Murai M; Ichimaru N; Tanaka C; Nakajima H; Wakasa K; Miyagawa H Phytochemistry; 2011 Jan; 72(1):7-13. PubMed ID: 21112065 [TBL] [Abstract][Full Text] [Related]
5. Targeting tryptophan decarboxylase to selected subcellular compartments of tobacco plants affects enzyme stability and in vivo function and leads to a lesion-mimic phenotype. Di Fiore S; Li Q; Leech MJ; Schuster F; Emans N; Fischer R; Schillberg S Plant Physiol; 2002 Jul; 129(3):1160-9. PubMed ID: 12114570 [TBL] [Abstract][Full Text] [Related]
6. Experimental Evidence and In Silico Identification of Tryptophan Decarboxylase in Citrus Genus. De Masi L; Castaldo D; Pignone D; Servillo L; Facchiano A Molecules; 2017 Feb; 22(2):. PubMed ID: 28208655 [TBL] [Abstract][Full Text] [Related]
7. Plant cell culture monitoring using an in situ multiwavelength fluorescence probe. Hisiger S; Jolicoeur M Biotechnol Prog; 2005; 21(2):580-9. PubMed ID: 15801802 [TBL] [Abstract][Full Text] [Related]
8. Partial purification and some properties of tryptophan decarboxylase from a Bacillus strain. Büki KG; Vinh DQ; Horváth I Acta Microbiol Hung; 1985; 32(1):65-73. PubMed ID: 4036551 [TBL] [Abstract][Full Text] [Related]
9. Assay of tryptophan hydroxylase and aromatic L-amino acid decarboxylase based on rapid separation of the reaction product by high performance liquid chromatography. Hasegawa H; Yanagisawa M; Ichiyama A J Biochem; 1984 Jun; 95(6):1751-8. PubMed ID: 6432776 [TBL] [Abstract][Full Text] [Related]
10. High performance liquid chromatographic analysis of time-dependent changes in urinary excretion of indoleamines following tryptophan administration. Tsuchiya H; Ohtani S; Takagi N; Hayashi T Biomed Chromatogr; 1989 Jul; 3(4):157-60. PubMed ID: 2590726 [TBL] [Abstract][Full Text] [Related]
11. Overexpression of a tryptophan decarboxylase cDNA in Catharanthus roseus crown gall calluses results in increased tryptamine levels but not in increased terpenoid indole alkaloid production. Goddijn OJ; Pennings EJ; van der Helm P; Schilperoort RA; Verpoorte R; Hoge JH Transgenic Res; 1995 Sep; 4(5):315-23. PubMed ID: 8589734 [TBL] [Abstract][Full Text] [Related]
12. WRKY1-mediated regulation of tryptophan decarboxylase in tryptamine generation for withanamide production in Withania somnifera (Ashwagandha). Jadaun JS; Kushwaha AK; Sangwan NS; Narnoliya LK; Mishra S; Sangwan RS Plant Cell Rep; 2020 Nov; 39(11):1443-1465. PubMed ID: 32789542 [TBL] [Abstract][Full Text] [Related]
13. A chimaeric tryptophan decarboxylase gene as a novel selectable marker in plant cells. Goddijn OJ; van der Duyn Schouten PM; Schilperoort RA; Hoge JH Plant Mol Biol; 1993 Aug; 22(5):907-12. PubMed ID: 8358036 [TBL] [Abstract][Full Text] [Related]
14. Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Hughes EH; Hong SB; Gibson SI; Shanks JV; San KY Biotechnol Bioeng; 2004 Jun; 86(6):718-27. PubMed ID: 15137084 [TBL] [Abstract][Full Text] [Related]
15. Preparation of enantiomerically pure L-7-azatryptophan by an enzymatic method and its application to the development of a fluorimetric activity assay for tryptophanyl-tRNA synthetase. Brennan JD; Hogue CW; Rajendran B; Willis KJ; Szabo AG Anal Biochem; 1997 Oct; 252(2):260-70. PubMed ID: 9344412 [TBL] [Abstract][Full Text] [Related]
16. The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Ishihara A; Hashimoto Y; Tanaka C; Dubouzet JG; Nakao T; Matsuda F; Nishioka T; Miyagawa H; Wakasa K Plant J; 2008 May; 54(3):481-95. PubMed ID: 18266919 [TBL] [Abstract][Full Text] [Related]
17. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases. Torrens-Spence MP; Lazear M; von Guggenberg R; Ding H; Li J Phytochemistry; 2014 Oct; 106():37-43. PubMed ID: 25107664 [TBL] [Abstract][Full Text] [Related]
20. Characterization of rice tryptophan decarboxylases and their direct involvement in serotonin biosynthesis in transgenic rice. Kang S; Kang K; Lee K; Back K Planta; 2007 Dec; 227(1):263-72. PubMed ID: 17763868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]