BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 9449322)

  • 1. Photoactivation of rhodopsin causes an increased hydrogen-deuterium exchange of buried peptide groups.
    Rath P; DeGrip WJ; Rothschild KJ
    Biophys J; 1998 Jan; 74(1):192-8. PubMed ID: 9449322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of transducin and transducin-derived peptides to rhodopsin studies by attenuated total reflection-Fourier transform infrared difference spectroscopy.
    Fahmy K
    Biophys J; 1998 Sep; 75(3):1306-18. PubMed ID: 9726932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared spectroscopic study of photoreceptor membrane and purple membrane. Protein secondary structure and hydrogen deuterium exchange.
    Downer NW; Bruchman TJ; Hazzard JH
    J Biol Chem; 1986 Mar; 261(8):3640-7. PubMed ID: 3949781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural changes in the peptide backbone in complex formation between activated rhodopsin and transducin studied by FTIR spectroscopy.
    Nishimura S; Sasaki J; Kandori H; Matsuda T; Fukada Y; Maeda A
    Biochemistry; 1996 Oct; 35(41):13267-71. PubMed ID: 8873590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved rapid-scan Fourier transform infrared difference spectroscopy on a noncyclic photosystem: rhodopsin photointermediates from Lumi to Meta II.
    Lüdeke S; Lórenz Fonfría VA; Siebert F; Vogel R
    Biopolymers; 2006 Oct; 83(2):159-69. PubMed ID: 16721790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing intramolecular orientations in rhodopsin and metarhodopsin II by polarized infrared difference spectroscopy.
    DeLange F; Bovee-Geurts PH; Pistorius AM; Rothschild KJ; DeGrip WJ
    Biochemistry; 1999 Oct; 38(40):13200-9. PubMed ID: 10529192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier transform infrared spectroscopic investigation of rhodopsin structure and its comparison with bacteriorhodopsin.
    Haris PI; Coke M; Chapman D
    Biochim Biophys Acta; 1989 Apr; 995(2):160-7. PubMed ID: 2539198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in conformational dynamics of ribonucleases A and S as observed by infrared spectroscopy and hydrogen-deuterium exchange.
    Dong A; Hyslop RM; Pringle DL
    Arch Biochem Biophys; 1996 Sep; 333(1):275-81. PubMed ID: 8806781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational changes in the core structure of bacteriorhodopsin.
    Kluge T; Olejnik J; Smilowitz L; Rothschild KJ
    Biochemistry; 1998 Jul; 37(28):10279-85. PubMed ID: 9665736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in structure of the chromophore in the photochemical process of bovine rhodopsin as revealed by FTIR spectroscopy for hydrogen out-of-plane vibrations.
    Ohkita YJ; Sasaki J; Maeda A; Yoshizawa T; Groesbeek M; Verdegem P; Lugtenburg J
    Biophys Chem; 1995; 56(1-2):71-8. PubMed ID: 7662871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of a G protein-coupled receptor with a G protein-derived peptide induces structural changes in both peptide and receptor: a Fourier-transform infrared study using isotopically labeled peptides.
    Vogel R; Martell S; Mahalingam M; Engelhard M; Siebert F
    J Mol Biol; 2007 Mar; 366(5):1580-8. PubMed ID: 17217962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active states of rhodopsin.
    Ernst OP; Bartl FJ
    Chembiochem; 2002 Oct; 3(10):968-74. PubMed ID: 12362361
    [No Abstract]   [Full Text] [Related]  

  • 13. Photoactivation of rhodopsin involves alterations in cysteine side chains: detection of an S-H band in the Meta I-->Meta II FTIR difference spectrum.
    Rath P; Bovee-Geurts PH; DeGrip WJ; Rothschild KJ
    Biophys J; 1994 Jun; 66(6):2085-91. PubMed ID: 8075342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suramin affects coupling of rhodopsin to transducin.
    Lehmann N; Krishna Aradhyam G; Fahmy K
    Biophys J; 2002 Feb; 82(2):793-802. PubMed ID: 11806921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen bonding changes of internal water molecules in rhodopsin during metarhodopsin I and metarhodopsin II formation.
    Rath P; Delange F; Degrip WJ; Rothschild KJ
    Biochem J; 1998 Feb; 329 ( Pt 3)(Pt 3):713-7. PubMed ID: 9445403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between photoactivated rhodopsin and the C-terminal peptide of transducin alpha-subunit studied by FTIR spectroscopy.
    Nishimura S; Kandori H; Maeda A
    Biochemistry; 1998 Nov; 37(45):15816-24. PubMed ID: 9843387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transducin-dependent protonation of glutamic acid 134 in rhodopsin.
    Fahmy K; Sakmar TP; Siebert F
    Biochemistry; 2000 Aug; 39(34):10607-12. PubMed ID: 10956053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring the hydrogen/deuterium exchange of proteins at high spatial resolution by mass spectrometry: overcoming gas-phase hydrogen/deuterium scrambling.
    Rand KD; Zehl M; Jørgensen TJ
    Acc Chem Res; 2014 Oct; 47(10):3018-27. PubMed ID: 25171396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier transform infrared spectroscopy indicates a major conformational rearrangement in the activation of rhodopsin.
    Garcia-Quintana D; Francesch A; Garriga P; de Lera AR; Padrós E; Manyosa J
    Biophys J; 1995 Sep; 69(3):1077-82. PubMed ID: 8519961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodopsin activation affects the environment of specific neighboring phospholipids: an FTIR spectroscopic study.
    Isele J; Sakmar TP; Siebert F
    Biophys J; 2000 Dec; 79(6):3063-71. PubMed ID: 11106612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.