These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 9449781)
21. Modeling high-intensity pulsed electric field inactivation of a lipase from Pseudomonas fluorescens. Soliva-Fortuny R; Bendicho-Porta S; Martín-Belloso O J Dairy Sci; 2006 Nov; 89(11):4096-104. PubMed ID: 17032996 [TBL] [Abstract][Full Text] [Related]
22. Enzymes from isolates of Pseudomonas fluorescens involved in food spoilage. Rajmohan S; Dodd CE; Waites WM J Appl Microbiol; 2002; 93(2):205-13. PubMed ID: 12147068 [TBL] [Abstract][Full Text] [Related]
23. Cloning and nucleotide sequence of thermostable lipase gene from Pseudomonas fluorescens SIK W1. Chung GH; Lee YP; Jeohn GH; Yoo OJ; Rhee JS Agric Biol Chem; 1991 Sep; 55(9):2359-65. PubMed ID: 1368740 [TBL] [Abstract][Full Text] [Related]
24. Thermal inactivation of a heat-resistant lipase produced by the psychotrophic bacterium Pseudomonas fluorescens. Andersson RE; Hedlund CB; Jonsson U J Dairy Sci; 1979 Mar; 62(3):361-7. PubMed ID: 109478 [TBL] [Abstract][Full Text] [Related]
25. Molecular typing of industrial strains of Pseudomonas spp. isolated from milk and genetical and biochemical characterization of an extracellular protease produced by one of them. Dufour D; Nicodème M; Perrin C; Driou A; Brusseaux E; Humbert G; Gaillard JL; Dary A Int J Food Microbiol; 2008 Jul; 125(2):188-96. PubMed ID: 18511140 [TBL] [Abstract][Full Text] [Related]
26. Cooling causes changes in the distribution of lipoprotein lipase and milk fat globule membrane proteins between the skim milk and cream phase. Dickow JA; Larsen LB; Hammershøj M; Wiking L J Dairy Sci; 2011 Feb; 94(2):646-56. PubMed ID: 21257033 [TBL] [Abstract][Full Text] [Related]
27. [Purification and characterization of proteases from Pseudomonas fluorescens and their effects on milk proteins]. Costa M; Gómez MF; Molina LH; Simpson R; Romero A Arch Latinoam Nutr; 2002 Jun; 52(2):160-6. PubMed ID: 12184150 [TBL] [Abstract][Full Text] [Related]
28. Inactivation of Pseudomonas fluorescens in skim milk by combinations of pulsed electric fields and organic acids. Fernández-Molina JJ; Altunakar B; Bermúdez-Aguirre D; Swanson BG; Barbosa-Cánovas GV J Food Prot; 2005 Jun; 68(6):1232-5. PubMed ID: 15954714 [TBL] [Abstract][Full Text] [Related]
29. Acidolysis and glyceride synthesis reactions using fatty acids with two Pseudomonas lipases having different substrate specificities. Kojima Y; Sakuradani E; Shimizu S J Biosci Bioeng; 2006 Sep; 102(3):179-83. PubMed ID: 17046530 [TBL] [Abstract][Full Text] [Related]
30. Effect of quorum sensing agents on the growth kinetics of Pseudomonas spp. of raw milk origin. Dunstall G; Rowe MT; Wisdom GB; Kilpatrick D J Dairy Res; 2005 Aug; 72(3):276-80. PubMed ID: 16174357 [TBL] [Abstract][Full Text] [Related]
31. Effect of psychrotrophic bacteria and of an isolated protease from Pseudomonas fluorescens M3/6 on the plasmin system of fresh milk. Fajardo-Lira C; Oria M; Hayes KD; Nielsen SS J Dairy Sci; 2000 Oct; 83(10):2190-9. PubMed ID: 11049058 [TBL] [Abstract][Full Text] [Related]
32. Quantitative studies of heat-stable proteinase from Pseudomonas fluorescens P1 by the enzyme-linked immunosorbent assay. Birkeland SE; Stepaniak L; Sørhaug T Appl Environ Microbiol; 1985 Feb; 49(2):382-7. PubMed ID: 3920965 [TBL] [Abstract][Full Text] [Related]
33. Interactions in biofilms of Lactococcus lactis ssp. cremoris and Pseudomonas fluorescens cultured in cold UHT milk. Kives J; Guadarrama D; Orgaz B; Rivera-Sen A; Vazquez J; SanJose C J Dairy Sci; 2005 Dec; 88(12):4165-71. PubMed ID: 16291607 [TBL] [Abstract][Full Text] [Related]
34. Production of diacylglycerols from glycerol monooleate and ethyl oleate through free and immobilized lipase-catalyzed consecutive reactions. Jin J; Li D; Zhu XM; Adhikari P; Lee KT; Lee JH N Biotechnol; 2011 Feb; 28(2):190-5. PubMed ID: 20951847 [TBL] [Abstract][Full Text] [Related]
35. Effect of Brij 58 on the hydrolysis of methyl butyrate by lipase from Pseudomonas fluorescens. Nakagawa A; Tsujita T; Okuda H J Biochem; 1984 Sep; 96(3):815-20. PubMed ID: 6438076 [TBL] [Abstract][Full Text] [Related]
36. Heat inactivation of exogenous proteinases from Pseudomonas fluorescens. I. Possibility of inactivation in milk. Kroll S; Klostermeyer H Z Lebensm Unters Forsch; 1984 Oct; 179(4):288-95. PubMed ID: 6438938 [TBL] [Abstract][Full Text] [Related]
37. Production of extracellular lipases and proteinases during prolonged growth of strains of psychrotrophic bacteria in whole milk. Stead D J Dairy Res; 1987 Nov; 54(4):535-43. PubMed ID: 3121703 [TBL] [Abstract][Full Text] [Related]
38. The ABC-exporter genes involved in the lipase secretion are clustered with the genes for lipase, alkaline protease, and serine protease homologues in Pseudomonas fluorescens no. 33. Kawai E; Idei A; Kumura H; Shimazaki K; Akatsuka H; Omori K Biochim Biophys Acta; 1999 Sep; 1446(3):377-82. PubMed ID: 10524213 [TBL] [Abstract][Full Text] [Related]
39. A strain of Pseudomonas fluorescens with two lipase-encoding genes, one of which possibly encodes cytoplasmic lipolytic activity. Beven CA; Dieckelmann M; Beacham IR J Appl Microbiol; 2001 Jun; 90(6):979-87. PubMed ID: 11412328 [TBL] [Abstract][Full Text] [Related]
40. Spoilage potential of psychrotrophic bacteria isolated from raw milk and the thermo-stability of their enzymes. Yuan L; Sadiq FA; Liu TJ; Li Y; Gu JS; Yang HY; He GQ J Zhejiang Univ Sci B; 2018 Aug.; 19(8):630-642. PubMed ID: 30070086 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]