BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 9449785)

  • 1. Mutational changes in the hemagglutinin of equine H3 influenza viruses result in the introduction of a glycosylation site which enhances the infectivity of the viruses.
    Adeyefa CA; McCauley JW; Tomori O
    Folia Microbiol (Praha); 1997; 42(4):390-4. PubMed ID: 9449785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hemagglutinins of duck and human H1 influenza viruses differ in sequence conservation and in glycosylation.
    Inkster MD; Hinshaw VS; Schulze IT
    J Virol; 1993 Dec; 67(12):7436-43. PubMed ID: 8230464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular changes in virulent mutants arising from avirulent avian influenza viruses during replication in 14-day-old embryonated eggs.
    Horimoto T; Kawaoka Y
    Virology; 1995 Jan; 206(1):755-9. PubMed ID: 7831837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of influenza A/Fujian/411/02 (H3N2) virus growth in embryonated chicken eggs by balancing the hemagglutinin and neuraminidase activities, using reverse genetics.
    Lu B; Zhou H; Ye D; Kemble G; Jin H
    J Virol; 2005 Jun; 79(11):6763-71. PubMed ID: 15890915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin?
    Kawaoka Y; Naeve CW; Webster RG
    Virology; 1984 Dec; 139(2):303-16. PubMed ID: 6516214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Comparison of sequences of the hemagglutinin gene and phylogenetical analysis of H9 subtype avian influenza viruses isolated from some regions in China].
    Liu H; Cheng J; Peng D; Jia L; Zhang R; Liu X
    Wei Sheng Wu Xue Bao; 2002 Jun; 42(3):288-97. PubMed ID: 12557368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence analysis of the hemagglutinin gene of H9N2 Korean avian influenza viruses and assessment of the pathogenic potential of isolate MS96.
    Lee CW; Song CS; Lee YJ; Mo IP; Garcia M; Suarez DL; Kim SJ
    Avian Dis; 2000; 44(3):527-35. PubMed ID: 11006999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid changes in the hemagglutinin and matrix proteins of influenza a (H2) viruses adapted to mice.
    Govorkova EA; Gambaryan AS; Claas EC; Smirnov YA
    Acta Virol; 2000 Oct; 44(5):241-8. PubMed ID: 11252668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reassortants with equine 1 (H7N7) influenza virus hemagglutinin in an avian influenza virus genetic background are pathogenic in chickens.
    Banbura MW; Kawaoka Y; Thomas TL; Webster RG
    Virology; 1991 Sep; 184(1):469-71. PubMed ID: 1871981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site.
    Matrosovich MN; Gambaryan AS; Teneberg S; Piskarev VE; Yamnikova SS; Lvov DK; Robertson JS; Karlsson KA
    Virology; 1997 Jun; 233(1):224-34. PubMed ID: 9201232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influenza virus hemagglutinin cytoplasmic tail is not essential for virus assembly or infectivity.
    Jin H; Leser GP; Lamb RA
    EMBO J; 1994 Nov; 13(22):5504-15. PubMed ID: 7957116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postreassortment changes in influenza A virus hemagglutinin restoring HA-NA functional match.
    Kaverin NV; Gambaryan AS; Bovin NV; Rudneva IA; Shilov AA; Khodova OM; Varich NL; Sinitsin BV; Makarova NV; Kropotkina EA
    Virology; 1998 May; 244(2):315-21. PubMed ID: 9601502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of the variations in potential glycosylation sites of the hemagglutinin of H9N2 influenza virus.
    Peng Q; Zhu R; Wang X; Shi H; Bellefleur M; Wang S; Liu X
    Virus Genes; 2019 Apr; 55(2):182-190. PubMed ID: 30594968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneity in the haemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico.
    GarcĂ­a M; Crawford JM; Latimer JW; Rivera-Cruz E; Perdue ML
    J Gen Virol; 1996 Jul; 77 ( Pt 7)():1493-504. PubMed ID: 8757992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence.
    Deshpande KL; Fried VA; Ando M; Webster RG
    Proc Natl Acad Sci U S A; 1987 Jan; 84(1):36-40. PubMed ID: 3467357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct sequencing of the HA gene of clinical equine H3N8 influenza virus and comparison with laboratory derived viruses.
    Ilobi CP; Nicolson C; Taylor J; Mumford JA; Wood JM; Robertson JS
    Arch Virol; 1998; 143(5):891-901. PubMed ID: 9645196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cocirculation of two distinct lineages of equine influenza virus subtype H3N8.
    Oxburgh L; Klingeborn B
    J Clin Microbiol; 1999 Sep; 37(9):3005-9. PubMed ID: 10449491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin.
    Abe Y; Takashita E; Sugawara K; Matsuzaki Y; Muraki Y; Hongo S
    J Virol; 2004 Sep; 78(18):9605-11. PubMed ID: 15331693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilizing the glycosylation pattern of influenza B hemagglutinin following adaptation to growth in eggs.
    Chen Z; Aspelund A; Jin H
    Vaccine; 2008 Jan; 26(3):361-71. PubMed ID: 18079027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Glycans attached to the stem domain of haemagglutinin efficiently regulate influenza A virus replication.
    Wagner R; Heuer D; Wolff T; Herwig A; Klenk HD
    J Gen Virol; 2002 Mar; 83(Pt 3):601-609. PubMed ID: 11842255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.