These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 9449827)

  • 1. Learning-induced dynamic receptive field changes in primary auditory cortex of the unanaesthetized Mongolian gerbil.
    Ohl FW; Scheich H
    J Comp Physiol A; 1997 Dec; 181(6):685-96. PubMed ID: 9449827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential frequency conditioning enhances spectral contrast sensitivity of units in auditory cortex (field Al) of the alert Mongolian gerbil.
    Ohl FW; Scheich H
    Eur J Neurosci; 1996 May; 8(5):1001-17. PubMed ID: 8743748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilateral ablation of auditory cortex in Mongolian gerbil affects discrimination of frequency modulated tones but not of pure tones.
    Ohl FW; Wetzel W; Wagner T; Rech A; Scheich H
    Learn Mem; 1999; 6(4):347-62. PubMed ID: 10509706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field-specific responses in the auditory cortex of the unanaesthetized Mongolian gerbil to tones and slow frequency modulations.
    Schulze H; Ohl FW; Heil P; Scheich H
    J Comp Physiol A; 1997 Dec; 181(6):573-89. PubMed ID: 9449818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional organization and learning-related plasticity in auditory cortex of the Mongolian gerbil.
    Scheich H; Simonis C; Ohl F; Tillein J; Thomas H
    Prog Brain Res; 1993; 97():135-43. PubMed ID: 8234740
    [No Abstract]   [Full Text] [Related]  

  • 6. Physiological memory in primary auditory cortex: characteristics and mechanisms.
    Weinberger NM
    Neurobiol Learn Mem; 1998; 70(1-2):226-51. PubMed ID: 9753599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid development of learning-induced receptive field plasticity in the auditory cortex.
    Edeline JM; Pham P; Weinberger NM
    Behav Neurosci; 1993 Aug; 107(4):539-51. PubMed ID: 8397859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional organization of auditory cortex in the mongolian gerbil (Meriones unguiculatus). II. Tonotopic 2-deoxyglucose.
    Scheich H; Heil P; Langner G
    Eur J Neurosci; 1993 Jul; 5(7):898-914. PubMed ID: 8281301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term retention of learning-induced receptive-field plasticity in the auditory cortex.
    Weinberger NM; Javid R; Lepan B
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2394-8. PubMed ID: 8460150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basal forebrain stimulation induces discriminative receptive field plasticity in the auditory cortex.
    Dimyan MA; Weinberger NM
    Behav Neurosci; 1999 Aug; 113(4):691-702. PubMed ID: 10495078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Right auditory cortex lesion in Mongolian gerbils impairs discrimination of rising and falling frequency-modulated tones.
    Wetzel W; Ohl FW; Wagner T; Scheich H
    Neurosci Lett; 1998 Aug; 252(2):115-8. PubMed ID: 9756335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reorganization in awake rat auditory cortex by local microstimulation and its effect on frequency-discrimination behavior.
    Talwar SK; Gerstein GL
    J Neurophysiol; 2001 Oct; 86(4):1555-72. PubMed ID: 11600620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some functions of primary auditory cortex in learning and memory formation.
    Scheich H; Stark H; Zuschratter W; Ohl FW; Simonis CE
    Adv Neurol; 1997; 73():179-93. PubMed ID: 8959214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning-induced physiological memory in adult primary auditory cortex: receptive fields plasticity, model, and mechanisms.
    Weinberger NM; Bakin JS
    Audiol Neurootol; 1998; 3(2-3):145-67. PubMed ID: 9575382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping of stimulus features and meaning in gerbil auditory cortex with 2-deoxyglucose and c-Fos antibodies.
    Scheich H; Zuschratter W
    Behav Brain Res; 1995 Jan; 66(1-2):195-205. PubMed ID: 7755890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitization induced receptive field plasticity in the auditory cortex is independent of CS-modality.
    Bakin JS; Lepan B; Weinberger NM
    Brain Res; 1992 Apr; 577(2):226-35. PubMed ID: 1606497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral plasticity in monkey primary auditory cortex limits performance generalization in a temporal discrimination task.
    Beitel RE; Schreiner CE; Vollmer M
    J Neurophysiol; 2020 Dec; 124(6):1798-1814. PubMed ID: 32997564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional organization of auditory cortex in the mongolian gerbil (Meriones unguiculatus). I. Electrophysiological mapping of frequency representation and distinction of fields.
    Thomas H; Tillein J; Heil P; Scheich H
    Eur J Neurosci; 1993 Jul; 5(7):882-97. PubMed ID: 8281300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Associative retuning in the thalamic source of input to the amygdala and auditory cortex: receptive field plasticity in the medial division of the medial geniculate body.
    Edeline JM; Weinberger NM
    Behav Neurosci; 1992 Feb; 106(1):81-105. PubMed ID: 1554440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of receptive field plasticity in the auditory cortex of the guinea pig during instrumental avoidance conditioning.
    Bakin JS; South DA; Weinberger NM
    Behav Neurosci; 1996 Oct; 110(5):905-13. PubMed ID: 8918994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.