BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 9449982)

  • 1. Isoforms of acetyl-CoA carboxylase: structures, regulatory properties and metabolic functions.
    Brownsey RW; Zhande R; Boone AN
    Biochem Soc Trans; 1997 Nov; 25(4):1232-8. PubMed ID: 9449982
    [No Abstract]   [Full Text] [Related]  

  • 2. Control mechanisms in the synthesis of saturated fatty acids.
    Bloch K; Vance D
    Annu Rev Biochem; 1977; 46():263-98. PubMed ID: 20038
    [No Abstract]   [Full Text] [Related]  

  • 3. Regulation of acetyl-CoA carboxylase.
    Brownsey RW; Boone AN; Elliott JE; Kulpa JE; Lee WM
    Biochem Soc Trans; 2006 Apr; 34(Pt 2):223-7. PubMed ID: 16545081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex formation and regulation of Escherichia coli acetyl-CoA carboxylase.
    Broussard TC; Price AE; Laborde SM; Waldrop GL
    Biochemistry; 2013 May; 52(19):3346-57. PubMed ID: 23594205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid-requiring mutant of Saccharomyces cerevisiae defective in acetyl-CoA carboxylase.
    Roggenkamp R; Numa S; Schweizer E
    Proc Natl Acad Sci U S A; 1980 Apr; 77(4):1814-7. PubMed ID: 6103540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine-tuning acetyl-CoA carboxylase 1 activity through localization: functional genomics reveals a role for the lysine acetyltransferase NuA4 and sphingolipid metabolism in regulating Acc1 activity and localization.
    Pham T; Walden E; Huard S; Pezacki J; Fullerton MD; Baetz K
    Genetics; 2022 Jul; 221(4):. PubMed ID: 35608294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates.
    Wang J; Xu R; Wang R; Haque ME; Liu A
    Biosci Biotechnol Biochem; 2016 Jun; 80(6):1214-22. PubMed ID: 26865376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetyl-CoA carboxylases 1 and 2 show distinct expression patterns in rats and humans and alterations in obesity and diabetes.
    Kreuz S; Schoelch C; Thomas L; Rist W; Rippmann JF; Neubauer H
    Diabetes Metab Res Rev; 2009 Sep; 25(6):577-86. PubMed ID: 19618481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human acetyl-CoA carboxylase: characterization, molecular cloning, and evidence for two isoforms.
    Abu-Elheiga L; Jayakumar A; Baldini A; Chirala SS; Wakil SJ
    Proc Natl Acad Sci U S A; 1995 Apr; 92(9):4011-5. PubMed ID: 7732023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of fatty acid biosynthesis by exogenous acetyl-CoA carboxylase and pantothenate kinase in Escherichia coli.
    Satoh S; Ozaki M; Matsumoto S; Nabatame T; Kaku M; Shudo T; Asayama M; Chohnan S
    Biotechnol Lett; 2020 Dec; 42(12):2595-2605. PubMed ID: 32902709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tale of two functions: enzymatic activity and translational repression by carboxyltransferase.
    Meades G; Benson BK; Grove A; Waldrop GL
    Nucleic Acids Res; 2010 Mar; 38(4):1217-27. PubMed ID: 19965770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordinate expression of the acetyl coenzyme A carboxylase genes, accB and accC, is necessary for normal regulation of biotin synthesis in Escherichia coli.
    Abdel-Hamid AM; Cronan JE
    J Bacteriol; 2007 Jan; 189(2):369-76. PubMed ID: 17056747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pattern and regulation of acetyl-CoA carboxylase gene expression.
    Kim KH; Tae HJ
    J Nutr; 1994 Aug; 124(8 Suppl):1273S-1283S. PubMed ID: 7914919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator.
    Liu D; Xiao Y; Evans BS; Zhang F
    ACS Synth Biol; 2015 Feb; 4(2):132-40. PubMed ID: 24377365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing Fatty Acid Production of Saccharomyces cerevisiae as an Animal Feed Supplement.
    You SK; Joo YC; Kang DH; Shin SK; Hyeon JE; Woo HM; Um Y; Park C; Han SO
    J Agric Food Chem; 2017 Dec; 65(50):11029-11035. PubMed ID: 29185736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving polyketide and fatty acid synthesis by engineering of the yeast acetyl-CoA carboxylase.
    Choi JW; Da Silva NA
    J Biotechnol; 2014 Oct; 187():56-9. PubMed ID: 25078432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty acid synthesis and its regulation.
    Wakil SJ; Stoops JK; Joshi VC
    Annu Rev Biochem; 1983; 52():537-79. PubMed ID: 6137188
    [No Abstract]   [Full Text] [Related]  

  • 18. The bacterial signal transduction protein GlnB regulates the committed step in fatty acid biosynthesis by acting as a dissociable regulatory subunit of acetyl-CoA carboxylase.
    Gerhardt EC; Rodrigues TE; Müller-Santos M; Pedrosa FO; Souza EM; Forchhammer K; Huergo LF
    Mol Microbiol; 2015 Mar; 95(6):1025-35. PubMed ID: 25557370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological mechanism by which acetyl CoA carboxylase is regulated.
    Abdel-Halim MN; Yousufzai SY
    Experientia; 1981 Nov; 37(11):1167-8. PubMed ID: 6119225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that acyl coenzyme A synthetase activity is required for repression of yeast acetyl coenzyme A carboxylase by exogenous fatty acids.
    Kamiryo T; Parthasarathy S; Numa S
    Proc Natl Acad Sci U S A; 1976 Feb; 73(2):386-90. PubMed ID: 1754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.