These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 9450378)
1. Visual perception modifies goal-directed movement control: supporting evidence from a visual perturbation paradigm. Proteau L; Masson G Q J Exp Psychol A; 1997 Nov; 50(4):726-41. PubMed ID: 9450378 [TBL] [Abstract][Full Text] [Related]
2. Evidence for continuous processing of visual information in a manual video-aiming task. Proteau L; Roujoula A; Messier J J Mot Behav; 2009 May; 41(3):219-31. PubMed ID: 19366655 [TBL] [Abstract][Full Text] [Related]
3. Effects of correct and transformed visual feedback on rhythmic visuo-motor tracking: tracking performance and visual search behavior. Roerdink M; Peper CE; Beek PJ Hum Mov Sci; 2005 Jun; 24(3):379-402. PubMed ID: 16087264 [TBL] [Abstract][Full Text] [Related]
4. The role of online visual feedback for the control of target-directed and allocentric hand movements. Thaler L; Goodale MA J Neurophysiol; 2011 Feb; 105(2):846-59. PubMed ID: 21160005 [TBL] [Abstract][Full Text] [Related]
5. Remapping hand movements in a novel geometrical environment. Mosier KM; Scheidt RA; Acosta S; Mussa-Ivaldi FA J Neurophysiol; 2005 Dec; 94(6):4362-72. PubMed ID: 16148276 [TBL] [Abstract][Full Text] [Related]
6. Dynamic cursor gain and tactual feedback in the capture of cursor movements. Keyson DV Ergonomics; 1997 Dec; 40(12):1287-98. PubMed ID: 9416013 [TBL] [Abstract][Full Text] [Related]
7. The use of online control: a developmental perspective. McKay SM; Weir PL Dev Neuropsychol; 2004; 25(3):299-320. PubMed ID: 15148001 [TBL] [Abstract][Full Text] [Related]
8. Visual control of manual aiming movements in 6- to 10-year-old children and adults. Lhuisset L; Proteau L J Mot Behav; 2004 Jun; 36(2):161-72. PubMed ID: 15130867 [TBL] [Abstract][Full Text] [Related]
9. Delayed visual feedback affects both manual tracking and grip force control when transporting a handheld object. Sarlegna FR; Baud-Bovy G; Danion F J Neurophysiol; 2010 Aug; 104(2):641-53. PubMed ID: 20538774 [TBL] [Abstract][Full Text] [Related]
10. On the role of visual afferent information for the control of aiming movements toward targets of different sizes. Proteau L; Isabelle G J Mot Behav; 2002 Dec; 34(4):367-84. PubMed ID: 12446251 [TBL] [Abstract][Full Text] [Related]
11. Independent on-line control of the two hands during bimanual reaching. Diedrichsen J; Nambisan R; Kennerley SW; Ivry RB Eur J Neurosci; 2004 Mar; 19(6):1643-52. PubMed ID: 15066160 [TBL] [Abstract][Full Text] [Related]
12. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements. Scheidt RA; Conditt MA; Secco EL; Mussa-Ivaldi FA J Neurophysiol; 2005 Jun; 93(6):3200-13. PubMed ID: 15659526 [TBL] [Abstract][Full Text] [Related]
13. Position coding in a video-controlled pointing task with a rotated visual display: evidence for individual differences in visuo-proprioceptive interaction. Coello Y; Milleville-Pennel I; Orliaguet JP Neurosci Lett; 2004 Oct; 369(3):214-8. PubMed ID: 15464267 [TBL] [Abstract][Full Text] [Related]
14. Is visual-based, online control of manual-aiming movements disturbed when adapting to new movement dynamics? Mackrous I; Proteau L Vision Res; 2015 May; 110(Pt B):223-32. PubMed ID: 24874948 [TBL] [Abstract][Full Text] [Related]
16. Visuomotor adaptation does not recalibrate kinesthetic sense of felt hand path. Wong T; Henriques DY J Neurophysiol; 2009 Feb; 101(2):614-23. PubMed ID: 19019980 [TBL] [Abstract][Full Text] [Related]
17. Visual dominance in amending the directional parameter of feedforward control. Hirata C; Yoshida S J Mot Behav; 2000 Mar; 32(1):17-25. PubMed ID: 11008268 [TBL] [Abstract][Full Text] [Related]