BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 9450664)

  • 41. Suppressive role of endogenous regucalcin in the regulation of nitric oxide synthase activity in heart muscle cytosol of normal and regucalcin transgenic rats.
    Ma ZJ; Yamaguchi M
    Int J Mol Med; 2002 Dec; 10(6):761-6. PubMed ID: 12430004
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes.
    Verde I; Vandecasteele G; Lezoualc'h F; Fischmeister R
    Br J Pharmacol; 1999 May; 127(1):65-74. PubMed ID: 10369457
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Suppressive role of endogenous regucalcin in the regulation of protein phosphatase activity in rat renal cortex cytosol.
    Morooka Y; Yamaguchi M
    J Cell Biochem; 2001; 81(4):639-46. PubMed ID: 11329618
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selective alteration of Ca2+-dependent and Ca2+-independent cyclic nucleotide phosphodiesterase activity in rat cerebral cortex by cyclic nucleotides and their analogs.
    Davis CW
    Biochim Biophys Acta; 1982 Jul; 705(1):1-7. PubMed ID: 6288105
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inhibitory role of regucalcin in the regulation of nitric oxide synthase activity in rat brain cytosol: involvement of aging.
    Tobisawa M; Yamaguchi M
    J Neurol Sci; 2003 May; 209(1-2):47-54. PubMed ID: 12686401
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation by a beta-adrenergic receptor of a Ca2+-independent adenosine 3',5'-(cyclic)monophosphate phosphodiesterase in C6 glioma cells.
    Onali P; Schwartz JP; Hanbauer I; Costa E
    Biochim Biophys Acta; 1981 Jul; 675(2):285-92. PubMed ID: 6268187
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Calmodulin regulation of testicular cyclic nucleotide phosphodiesterases.
    Purvis K; Hansson V
    Int J Androl; 1980 Dec; 3(6):713-8. PubMed ID: 6259062
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of Ca2+ and calmodulin on cyclic nucleotide metabolism in neurosecretosomes isolated from ox neurohypophyses.
    Dartt DA; Torp-Pedersen C; Thorn NA
    Brain Res; 1981 Jan; 204(1):121-8. PubMed ID: 6113872
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phosphorylation and activation of calmodulin-sensitive cyclic nucleotide phosphodiesterase by a brain Ca2+, calmodulin-dependent protein kinase.
    Fukunaga K; Yamamoto H; Tanaka E; Iwasa T; Miyamoto E
    Life Sci; 1984 Jul; 35(5):493-9. PubMed ID: 6087066
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Suppressive effect of regucalcin on protein phosphatase activity in the heart cytosol of normal and regucalcin transgenic rats.
    Ichikawa E; Tsurusaki Y; Yamaguchi M
    Int J Mol Med; 2004 Feb; 13(2):289-93. PubMed ID: 14719136
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase activities of rat mammary tissue.
    Mullaney I; Clegg RA
    Biochem J; 1984 May; 219(3):801-9. PubMed ID: 6331397
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cyclic nucleotide phosphodiesterases from frog atrial fibers: isolation and drug sensitivities.
    Lugnier C; Gauthier C; Le Bec A; Soustre H
    Am J Physiol; 1992 Mar; 262(3 Pt 2):H654-60. PubMed ID: 1373036
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cyclic nucleotide phosphodiesterases in glomeruli of rat renal cortex.
    Torres VE; Hui YS; Shah SV; Northrup TE; Dousa TP
    Kidney Int; 1978 Nov; 14(5):444-51. PubMed ID: 220459
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The metabolism of cyclic nucleotides in the guinea-pig pancreas. Cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase.
    Methven P; Lemon M; Bhoola K
    Biochem J; 1980 Feb; 186(2):491-8. PubMed ID: 6246887
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Effect of several hormones on cyclic 3',5'-nucleotide phosphodiesterase in rat kidneys].
    Iwase K
    Nihon Naibunpi Gakkai Zasshi; 1983 Oct; 59(10):1678-91. PubMed ID: 6319206
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activation of the cyclic nucleotide phosphodiesterase from rat heart cytosol by phospholipase C.
    Prigent AF; Némoz G; Picq M; Dubois M; Pacheco H
    Biochem Biophys Res Commun; 1984 Feb; 119(1):236-44. PubMed ID: 6322779
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Modern representations of multiple forms of cyclic nucleotide phosphodiesterases in mammalian tissues].
    Medvedeva MV
    Biokhimiia; 1995 Mar; 60(3):364-86. PubMed ID: 7734612
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of cyclic nucleotide phosphodiesterases from cultured bovine aortic endothelial cells.
    Lugnier C; Schini VB
    Biochem Pharmacol; 1990 Jan; 39(1):75-84. PubMed ID: 2153383
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proteolysis of cyclic AMP phosphodiesterase-II attenuates its ability to be inhibited by compounds which exert positive inotropic actions in cardiac tissue.
    Price B; Pyne NJ; Houslay MD
    Biochem Pharmacol; 1987 Dec; 36(23):4047-54. PubMed ID: 2825712
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of trifluoperazine on cyclic nucleotide phosphodiesterase activity in crude homogenates of bovine adrenal medulla.
    Crimaldi AA; Kuo IC; Coffee CJ
    Ann N Y Acad Sci; 1980; 356():367-8. PubMed ID: 6263155
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.