These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 9450981)
1. Forewing movements and intracellular motoneurone stimulation in tethered flying locusts. Hedwig B; g J Exp Biol; 1998 Jun; 201 (Pt 12)():731-44. PubMed ID: 9450981 [TBL] [Abstract][Full Text] [Related]
2. Forewing asymmetries during auditory avoidance in flying locusts. Dawson J; Dawson-Scully K; Robert D; RobertsonÝ R J Exp Biol; 1997; 200(Pt 17):2323-35. PubMed ID: 9320244 [TBL] [Abstract][Full Text] [Related]
3. Monosynaptic connexions between wing stretch receptors and flight motoneurones of the locust. Burrows M J Exp Biol; 1975 Feb; 62(1):189-219. PubMed ID: 168304 [TBL] [Abstract][Full Text] [Related]
4. Neural control of hindleg steering in flight in the locust. Lorez M J Exp Biol; 1995; 198(Pt 4):869-75. PubMed ID: 9318653 [TBL] [Abstract][Full Text] [Related]
5. Acoustic startle/escape reactions in tethered flying locusts: motor patterns and wing kinematics underlying intentional steering. Dawson JW; Leung FH; Robertson RM J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jul; 190(7):581-600. PubMed ID: 15127218 [TBL] [Abstract][Full Text] [Related]
6. Thermal avoidance during flight in the locust Locusta migratoria. Robertson R; Kuhnert C; Dawson J J Exp Biol; 1996; 199(Pt 6):1383-93. PubMed ID: 9319276 [TBL] [Abstract][Full Text] [Related]
7. Bilateral flight muscle activity predicts wing kinematics and 3-dimensional body orientation of locusts responding to looming objects. McMillan GA; Loessin V; Gray JR J Exp Biol; 2013 Sep; 216(Pt 17):3369-80. PubMed ID: 23737560 [TBL] [Abstract][Full Text] [Related]
8. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651 [TBL] [Abstract][Full Text] [Related]
9. Proprioceptive input patterns elevator activity in the locust flight system. Wolf H; Pearson KG J Neurophysiol; 1988 Jun; 59(6):1831-53. PubMed ID: 3404207 [TBL] [Abstract][Full Text] [Related]
10. The contractile properties of the M. supracoracoideus In the pigeon and starling: a case for long-axis rotation of the humerus. Poore SO; Ashcroft A; Sánchez-Haiman A; Goslow GE J Exp Biol; 1997 Dec; 200 (Pt 23)():2987-3002. PubMed ID: 9359888 [TBL] [Abstract][Full Text] [Related]
11. Maximum metabolic rate, relative lift, wingbeat frequency and stroke amplitude during tethered flight in the adult locust Locusta migratoria. Snelling EP; Seymour RS; Matthews PG; White CR J Exp Biol; 2012 Sep; 215(Pt 18):3317-23. PubMed ID: 22735344 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional simulation for fast forward flight of a calliope hummingbird. Song J; Tobalske BW; Powers DR; Hedrick TL; Luo H R Soc Open Sci; 2016 Jun; 3(6):160230. PubMed ID: 27429779 [TBL] [Abstract][Full Text] [Related]
13. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds. Hedrick TL; Usherwood JR; Biewener AA J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202 [TBL] [Abstract][Full Text] [Related]
14. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion. Sun M; Wu JH J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674 [TBL] [Abstract][Full Text] [Related]
15. Turning manoeuvres in free-flying locusts: two-channel radio-telemetric transmission of muscle activity. Kutsch W; Berger S; Kautz H J Exp Zool A Comp Exp Biol; 2003 Oct; 299(2):139-50. PubMed ID: 12975802 [TBL] [Abstract][Full Text] [Related]
16. Role of wing pronation in evasive steering of locusts. Ribak G; Rand D; Weihs D; Ayali A J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Jul; 198(7):541-55. PubMed ID: 22547148 [TBL] [Abstract][Full Text] [Related]
17. Connections of the forewing tegulae in the locust flight system and their modification following partial deafferentation. Büschges A; Ramirez JM; Driesang R; Pearson KG J Neurobiol; 1992 Feb; 23(1):44-60. PubMed ID: 1373440 [TBL] [Abstract][Full Text] [Related]
18. Differential pressure distribution measurement with an MEMS sensor on a free-flying butterfly wing. Takahashi H; Tanaka H; Matsumoto K; Shimoyama I Bioinspir Biomim; 2012 Sep; 7(3):036020. PubMed ID: 22711175 [TBL] [Abstract][Full Text] [Related]
19. Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers. Lindhe Norberg UM; Winter Y J Exp Biol; 2006 Oct; 209(Pt 19):3887-97. PubMed ID: 16985205 [TBL] [Abstract][Full Text] [Related]
20. Flight kinematics of black-billed magpies and pigeons over a wide range of speeds. Tobalske B; Dial K J Exp Biol; 1996; 199(Pt 2):263-80. PubMed ID: 9317775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]