BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9451613)

  • 1. Choroidal readaptation to gravity in rats after spaceflight and head-down tilt.
    Davet J; Clavel B; Datas L; Mani-Ponset L; Maurel D; Herbuté S; Viso M; Hinds W; Jarvi J; Gabrion J
    J Appl Physiol (1985); 1998 Jan; 84(1):19-29. PubMed ID: 9451613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in apical organization of choroidal cells in rats adapted to spaceflight or head-down tilt.
    Gabrion J; Maurel D; Clavel B; Davet J; Fareh J; Herbuté S; O'Mara K; Gharib C; Hinds W; Krasnov I; Guell A
    Brain Res; 1996 Sep; 734(1-2):301-15. PubMed ID: 8896838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered gravity downregulates aquaporin-1 protein expression in choroid plexus.
    Masseguin C; Corcoran M; Carcenac C; Daunton NG; Güell A; Verkman AS; Gabrion J
    J Appl Physiol (1985); 2000 Mar; 88(3):843-50. PubMed ID: 10710377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Choroidal responses in microgravity. (SLS-1, SLS-2 and hindlimb-suspension experiments).
    Gabrion J; Herbute S; Oliver J; Maurel D; Davet J; Clavel B; Gharib C; Fareh J; Fagette S; Nguyen B
    Acta Astronaut; 1995; 36(8-12):439-48. PubMed ID: 11540975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistence of tight junctions and changes in apical structures and protein expression in choroid plexus epithelium of rats after short-term head-down tilt.
    Masseguin C; Mani-Ponset L; Herbuté S; Tixier-Vidal A; Gabrion J
    J Neurocytol; 2001 May; 30(5):365-77. PubMed ID: 11951048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hindlimb-suspension and spaceflight both alter cGMP levels in rat choroid plexus.
    Carcenac C; Herbute S; Masseguin C; Mani-Ponset L; Maurel D; Briggs R; Guell A; Gabrion JB
    J Gravit Physiol; 1999 Oct; 6(2):17-24. PubMed ID: 11543082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of an 11-day spaceflight on the choroid plexus of developing rats.
    Mani-Ponset L; Masseguin C; Davet J; Herbuté S; Maurel D; Ghandour MS; Reiss-Bubenheim D; Güell A; Gabrion J
    Brain Res Dev Brain Res; 1997 Apr; 99(2):187-200. PubMed ID: 9125472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-duration bed rest as an analog to microgravity.
    Hargens AR; Vico L
    J Appl Physiol (1985); 2016 Apr; 120(8):891-903. PubMed ID: 26893033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analogs of microgravity: head-down tilt and water immersion.
    Watenpaugh DE
    J Appl Physiol (1985); 2016 Apr; 120(8):904-14. PubMed ID: 26869710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning.
    Gaveau J; Paizis C; Berret B; Pozzo T; Papaxanthis C
    J Neurophysiol; 2011 Aug; 106(2):620-9. PubMed ID: 21562193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human and rodent ground-based models of space flight environments.
    Schmitt D; Angerer O
    Gravit Space Biol Bull; 2001 Jun; 14(2):65-7. PubMed ID: 11865870
    [No Abstract]   [Full Text] [Related]  

  • 12. Body mass change during altered gravity: spaceflight, centrifugation, and return to 1 G.
    Wade CE; Harper JS; Daunton NG; Corcoran ML; Morey-Holton E
    J Gravit Physiol; 1997 Oct; 4(3):43-8. PubMed ID: 11541868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal function of rats in response to 37 days of head-down tilt.
    Wang TJ; Wade CE
    J Gravit Physiol; 2001 Dec; 8(2):85-9. PubMed ID: 12365454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central and peripheral noradrenergic responses to 14 days of spaceflight (SLS-2) or hindlimb suspension in rats.
    Fagette S; Somody L; Koubi H; Fareh J; Viso M; Gharib C; Gauquelin G
    Aviat Space Environ Med; 1996 May; 67(5):458-62. PubMed ID: 8725473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weightlessness simulations for cardiovascular and muscle systems: validity of rat models.
    Musacchia XJ; Fagette S
    J Gravit Physiol; 1997 Oct; 4(3):49-59. PubMed ID: 11541869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac, cerebral & lower limb hemodynamic changes, during HDT (5 days to 42 d) & space flights (7 days to 6 months).
    Tobal N; Roumy J; Herault S; Fomina G; Alferova I; Arbeille P
    J Gravit Physiol; 2001 Jul; 8(1):P53-4. PubMed ID: 12638622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data.
    Convertino VA
    J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower-body negative pressure restores leg bone microvascular flow to supine levels during head-down tilt.
    Siamwala JH; Lee PC; Macias BR; Hargens AR
    J Appl Physiol (1985); 2015 Jul; 119(2):101-9. PubMed ID: 25930022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of space flight and head-down bedrest on neuroendocrine response to metabolic stress in physically trained subjects.
    Kvetnanský R; Ksinantová L; Koska J; Noskov VB; Vigas M; Grigoriev AI; Macho L
    J Gravit Physiol; 2004 Jul; 11(2):P57-60. PubMed ID: 16231455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Spacelab 3 simulation: basis for a model of growth plate response in microgravity in the rat.
    Montufar-Solis D; Duke PJ; Morey-Holton E
    J Gravit Physiol; 2001 Dec; 8(2):67-76. PubMed ID: 12365452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.