These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 9452220)
41. Differential vulnerability of neurochemically identified subpopulations of retinal neurons in a monkey model of glaucoma. Vickers JC; Schumer RA; Podos SM; Wang RF; Riederer BM; Morrison JH Brain Res; 1995 May; 680(1-2):23-35. PubMed ID: 7663981 [TBL] [Abstract][Full Text] [Related]
42. Expression of calcium-binding proteins in the diencephalon of the lizard Psammodromus algirus. Dávila JC; Guirado S; Puelles L J Comp Neurol; 2000 Nov; 427(1):67-92. PubMed ID: 11042592 [TBL] [Abstract][Full Text] [Related]
43. Synaptic pattern of nicotinic acetylcholine receptor α7 and β2 subunits on the direction-selective retinal ganglion cells in the postnatal mouse retina. Kim HJ; Jeon CJ Exp Eye Res; 2014 May; 122():54-64. PubMed ID: 24631336 [TBL] [Abstract][Full Text] [Related]
44. Parvalbumin is highly colocalized with calbindin D28k and rarely with calcitonin gene-related peptide in dorsal root ganglia neurons of rat. Carr PA; Yamamoto T; Karmy G; Baimbridge KG; Nagy JI Brain Res; 1989 Sep; 497(1):163-70. PubMed ID: 2790451 [TBL] [Abstract][Full Text] [Related]
45. Exogenous brain-derived neurotrophic factor (BDNF) reverts phenotypic changes in the retinas of transgenic mice lacking the BDNF gene. Arango-González B; Cellerino A; Kohler K Invest Ophthalmol Vis Sci; 2009 Mar; 50(3):1416-22. PubMed ID: 18997090 [TBL] [Abstract][Full Text] [Related]
46. Intracellular distributions and putative functions of calcium-binding proteins in the bullfrog vestibular otolith organs. Baird RA; Steyger PS; Schuff NR Hear Res; 1997 Jan; 103(1-2):85-100. PubMed ID: 9007577 [TBL] [Abstract][Full Text] [Related]
47. Immunohistochemical characterization of somatostatin containing interneurons in the rat basolateral amygdala. McDonald AJ; Mascagni F Brain Res; 2002 Jul; 943(2):237-44. PubMed ID: 12101046 [TBL] [Abstract][Full Text] [Related]
48. Differential morphology of the superior olivary complex of Meriones unguiculatus and Monodelphis domestica revealed by calcium-binding proteins. Bazwinsky-Wutschke I; Härtig W; Kretzschmar R; Rübsamen R Brain Struct Funct; 2016 Dec; 221(9):4505-4523. PubMed ID: 26792006 [TBL] [Abstract][Full Text] [Related]
49. S100 protein-immunoreactive primary sensory neurons in the trigeminal and dorsal root ganglia of the rat. Ichikawa H; Jacobowitz DM; Sugimoto T Brain Res; 1997 Feb; 748(1-2):253-7. PubMed ID: 9067472 [TBL] [Abstract][Full Text] [Related]
50. [Expression of calcium-binding proteins parvalbumin and calbindin in neurons of the neocortex grafts]. Aleksandrova MA; Girman SV; Revishchin AV Dokl Akad Nauk; 1997 Jul; 355(1):130-3. PubMed ID: 9333410 [No Abstract] [Full Text] [Related]
51. Distribution of the calcium-binding proteins calbindin D-28K and parvalbumin in the superior colliculus of adult and neonatal cat and rhesus monkey. McHaffie JG; Anstrom KK; Gabriele ML; Stein BE Exp Brain Res; 2001 Dec; 141(4):460-70. PubMed ID: 11810140 [TBL] [Abstract][Full Text] [Related]
52. Effects of chronic monocular enucleation on calcium binding proteins calbindin-D28k and parvalbumin in the lateral geniculate nucleus of adult rhesus monkeys. Gutierrez C; Cusick CG Brain Res; 1994 Jul; 651(1-2):300-10. PubMed ID: 7922579 [TBL] [Abstract][Full Text] [Related]
53. Effects of retinal lesions upon the distribution of nicotinic acetylcholine receptor subunits in the chick visual system. Britto LR; Torrão AS; Hamassaki-Britto DE; Mpodozis J; Keyser KT; Lindstrom JM; Karten HJ J Comp Neurol; 1994 Dec; 350(3):473-84. PubMed ID: 7884052 [TBL] [Abstract][Full Text] [Related]
54. Specific amacrine cell changes in an induced mouse model of glaucoma. Gunn DJ; Gole GA; Barnett NL Clin Exp Ophthalmol; 2011 Aug; 39(6):555-63. PubMed ID: 21176046 [TBL] [Abstract][Full Text] [Related]
55. Parvalbumin increases in the caudate putamen of rats with vitamin D hypervitaminosis. de Viragh PA; Haglid KG; Celio MR Proc Natl Acad Sci U S A; 1989 May; 86(10):3887-90. PubMed ID: 2542952 [TBL] [Abstract][Full Text] [Related]
56. Synaptophysin immunoreactivity and distributions of calcium-binding proteins highlight the functional organization of the rat's dorsal column nuclei. Crockett DP; Maslany S; Egger MD Brain Res; 1996 Jan; 707(1):31-46. PubMed ID: 8866711 [TBL] [Abstract][Full Text] [Related]
57. Pattern of selected calcium-binding proteins in the vestibular nuclear complex of two rodent species. Kevetter GA J Comp Neurol; 1996 Feb; 365(4):575-84. PubMed ID: 8742303 [TBL] [Abstract][Full Text] [Related]
58. Parvalbumin, calbindin, and calretinin mark distinct pathways during development of monkey dorsal lateral geniculate nucleus. Yan YH; Winarto A; Mansjoer I; Hendrickson A J Neurobiol; 1996 Oct; 31(2):189-209. PubMed ID: 8885200 [TBL] [Abstract][Full Text] [Related]
59. Non-serotonergic dorsal and median raphe projection onto parvalbumin- and calbindin-containing neurons in hippocampus and septum. Aznar S; Qian ZX; Knudsen GM Neuroscience; 2004; 124(3):573-81. PubMed ID: 14980728 [TBL] [Abstract][Full Text] [Related]
60. Distribution of calcium binding proteins in visual and auditory cortices of hamsters. Desgent S; Boire D; Ptito M Exp Brain Res; 2005 May; 163(2):159-72. PubMed ID: 15672239 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]