These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 9452414)

  • 1. Dengue fever epidemic potential as projected by general circulation models of global climate change.
    Patz JA; Martens WJ; Focks DA; Jetten TH
    Environ Health Perspect; 1998 Mar; 106(3):147-53. PubMed ID: 9452414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate Change and Aedes Vectors: 21st Century Projections for Dengue Transmission in Europe.
    Liu-Helmersson J; Quam M; Wilder-Smith A; Stenlund H; Ebi K; Massad E; Rocklöv J
    EBioMedicine; 2016 May; 7():267-77. PubMed ID: 27322480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential changes in the distribution of dengue transmission under climate warming.
    Jetten TH; Focks DA
    Am J Trop Med Hyg; 1997 Sep; 57(3):285-97. PubMed ID: 9311638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission.
    Huber JH; Childs ML; Caldwell JM; Mordecai EA
    PLoS Negl Trop Dis; 2018 May; 12(5):e0006451. PubMed ID: 29746468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bionomic response of Aedes aegypti to two future climate change scenarios in far north Queensland, Australia: implications for dengue outbreaks.
    Williams CR; Mincham G; Ritchie SA; Viennet E; Harley D
    Parasit Vectors; 2014 Sep; 7():447. PubMed ID: 25240382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Changes in range of mosquito-borne diseases affected by global climatic fluctuations].
    Rydzanicz K; Kiewra D; Lonc E
    Wiad Parazytol; 2006; 52(2):73-83. PubMed ID: 17120987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Analysis of the Potential Impact of Climate Change on Dengue Transmission in the Southeastern United States.
    Butterworth MK; Morin CW; Comrie AC
    Environ Health Perspect; 2017 Apr; 125(4):579-585. PubMed ID: 27713106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential.
    Liu-Helmersson J; Stenlund H; Wilder-Smith A; Rocklöv J
    PLoS One; 2014; 9(3):e89783. PubMed ID: 24603439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue.
    Coutinho FA; Burattini MN; Lopez LF; Massad E
    Bull Math Biol; 2006 Nov; 68(8):2263-82. PubMed ID: 16952019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation models of dengue transmission in Funchal, Madeira Island: Influence of seasonality.
    Salami D; Capinha C; Sousa CA; Martins MDRO; Lord C
    PLoS Negl Trop Dis; 2020 Oct; 14(10):e0008679. PubMed ID: 33017443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate-driven variation in mosquito density predicts the spatiotemporal dynamics of dengue.
    Li R; Xu L; Bjørnstad ON; Liu K; Song T; Chen A; Xu B; Liu Q; Stenseth NC
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3624-3629. PubMed ID: 30808752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate, mosquito indices and the epidemiology of dengue fever in Trinidad (2002-2004).
    Chadee DD; Shivnauth B; Rawlins SC; Chen AA
    Ann Trop Med Parasitol; 2007 Jan; 101(1):69-77. PubMed ID: 17244411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Mosquito-Borne Disease Spread in U.S. Urbanized Areas: The Case of Dengue in Miami.
    Robert MA; Christofferson RC; Silva NJ; Vasquez C; Mores CN; Wearing HJ
    PLoS One; 2016; 11(8):e0161365. PubMed ID: 27532496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dengue situation in India: Suitability and transmission potential model for present and projected climate change scenarios.
    Kakarla SG; Bhimala KR; Kadiri MR; Kumaraswamy S; Mutheneni SR
    Sci Total Environ; 2020 Oct; 739():140336. PubMed ID: 32758966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A regional suitable conditions index to forecast the impact of climate change on dengue vectorial capacity.
    Davis C; Murphy AK; Bambrick H; Devine GJ; Frentiu FD; Yakob L; Huang X; Li Z; Yang W; Williams G; Hu W
    Environ Res; 2021 Apr; 195():110849. PubMed ID: 33561446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urban climate versus global climate change-what makes the difference for dengue?
    Misslin R; Telle O; Daudé E; Vaguet A; Paul RE
    Ann N Y Acad Sci; 2016 Oct; 1382(1):56-72. PubMed ID: 27197685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate change, population immunity, and hyperendemicity in the transmission threshold of dengue.
    Oki M; Yamamoto T
    PLoS One; 2012; 7(10):e48258. PubMed ID: 23144746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model.
    Hales S; de Wet N; Maindonald J; Woodward A
    Lancet; 2002 Sep; 360(9336):830-4. PubMed ID: 12243917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts.
    Focks DA; Brenner RJ; Hayes J; Daniels E
    Am J Trop Med Hyg; 2000 Jan; 62(1):11-8. PubMed ID: 10761719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate and the Timing of Imported Cases as Determinants of the Dengue Outbreak in Guangzhou, 2014: Evidence from a Mathematical Model.
    Cheng Q; Jing Q; Spear RC; Marshall JM; Yang Z; Gong P
    PLoS Negl Trop Dis; 2016 Feb; 10(2):e0004417. PubMed ID: 26863623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.