These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 9453087)

  • 21. Trans-tibial amputee gait: time-distance parameters and EMG activity.
    Isakov E; Keren O; Benjuya N
    Prosthet Orthot Int; 2000 Dec; 24(3):216-20. PubMed ID: 11195356
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gait patterns of transtibial amputee patients walking indoors barefoot.
    Han TR; Chung SG; Shin HI
    Am J Phys Med Rehabil; 2003 Feb; 82(2):96-100. PubMed ID: 12544754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reference values for gait temporal and loading symmetry of lower-limb amputees can help in refocusing rehabilitation targets.
    Cutti AG; Verni G; Migliore GL; Amoresano A; Raggi M
    J Neuroeng Rehabil; 2018 Sep; 15(Suppl 1):61. PubMed ID: 30255808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Weight bearing and velocity in trans-tibial and trans-femoral amputees.
    Jones ME; Bashford GM; Mann JM
    Prosthet Orthot Int; 1997 Dec; 21(3):183-6. PubMed ID: 9453090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact on the biomechanics of overground gait of using an 'Echelon' hydraulic ankle-foot device in unilateral trans-tibial and trans-femoral amputees.
    De Asha AR; Munjal R; Kulkarni J; Buckley JG
    Clin Biomech (Bristol); 2014 Aug; 29(7):728-34. PubMed ID: 24997811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of speed on gait parameters and on symmetry in trans-tibial amputees.
    Isakov E; Burger H; Krajnik J; Gregoric M; Marincek C
    Prosthet Orthot Int; 1996 Dec; 20(3):153-8. PubMed ID: 8985994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preliminary investigation of residual limb plantarflexion and dorsiflexion muscle activity during treadmill walking for trans-tibial amputees.
    Silver-Thorn B; Current T; Kuhse B
    Prosthet Orthot Int; 2012 Dec; 36(4):435-42. PubMed ID: 22581661
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of laterality on obstacle crossing performance in unilateral trans-tibial amputees.
    De Asha AR; Buckley JG
    Clin Biomech (Bristol); 2015 May; 30(4):343-6. PubMed ID: 25779690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance Evaluation of Jaipur Knee Joint through Kinematics and Kinetics Gait Symmetry with Unilateral Transfemoral Indian Amputees.
    Mishra P; Singh S; Ranjan V; Singh S; Vidyarthi A
    J Med Syst; 2019 Jan; 43(3):55. PubMed ID: 30694396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A pilot study to test the influence of specific prosthetic features in preventing trans-tibial amputees from walking like able-bodied subjects.
    Stefanyshyn DJ; Engsberg JR; Tedford KG; Harder JA
    Prosthet Orthot Int; 1994 Dec; 18(3):180-90. PubMed ID: 7724351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new modular six-bar linkage trans-femoral prosthesis for walking and squatting.
    Chakraborty JK; Patil KM
    Prosthet Orthot Int; 1994 Aug; 18(2):98-108. PubMed ID: 7991367
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical evaluation of SACH and uniaxial feet.
    Goh JC; Solomonidis SE; Spence WD; Paul JP
    Prosthet Orthot Int; 1984 Dec; 8(3):147-54. PubMed ID: 6522257
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy storage and release of prosthetic feet. Part 1: Biomechanical analysis related to user benefits.
    Postema K; Hermens HJ; de Vries J; Koopman HF; Eisma WH
    Prosthet Orthot Int; 1997 Apr; 21(1):17-27. PubMed ID: 9141122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy storage and release of prosthetic feet. Part 2: Subjective ratings of 2 energy storing and 2 conventional feet, user choice of foot and deciding factor.
    Postema K; Hermens HJ; de Vries J; Koopman HF; Eisma WH
    Prosthet Orthot Int; 1997 Apr; 21(1):28-34. PubMed ID: 9141123
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perceptions and biomechanical effects of varying prosthetic ankle stiffness during uphill walking: A case series.
    Ármannsdóttir AL; Lecomte C; Lemaire E; Brynjólfsson S; Briem K
    Gait Posture; 2024 Feb; 108():354-360. PubMed ID: 38227995
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of limb alignment on the gait of above-knee amputees.
    Yang L; Solomonidis SE; Spence WD; Paul JP
    J Biomech; 1991; 24(11):981-97. PubMed ID: 1761584
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stride kinematics and knee joint kinetics of child amputee gait.
    Hoy MG; Whiting WC; Zernicke RF
    Arch Phys Med Rehabil; 1982 Feb; 63(2):74-82. PubMed ID: 7059274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional joint center of prosthetic feet during level ground and incline walking.
    Lecomte C; Starker F; Guðnadóttir EÞ; Rafnsdóttir S; Guðmundsson K; Briem K; Brynjolfsson S
    Med Eng Phys; 2020 Jul; 81():13-21. PubMed ID: 32527519
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Frontal plane pelvis and hip kinematics of transfemoral amputee gait. Effect of a prosthetic foot with active ankle dorsiflexion and individualized training - a case study.
    Armannsdottir A; Tranberg R; Halldorsdottir G; Briem K
    Disabil Rehabil Assist Technol; 2018 May; 13(4):388-393. PubMed ID: 28974119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.