These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 9453087)

  • 41. Prosthetic feet: state-of-the-art review and the importance of mimicking human ankle-foot biomechanics.
    Versluys R; Beyl P; Van Damme M; Desomer A; Van Ham R; Lefeber D
    Disabil Rehabil Assist Technol; 2009 Mar; 4(2):65-75. PubMed ID: 19253096
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of mechanical and metabolic factors in the gait of congenital below knee amputees. A comparison of the SACH and Seattle feet.
    Colborne GR; Naumann S; Longmuir PE; Berbrayer D
    Am J Phys Med Rehabil; 1992 Oct; 71(5):272-8. PubMed ID: 1388973
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Altered kinetic strategy for the control of swing limb elevation over obstacles in unilateral below-knee amputee gait.
    Hill SW; Patla AE; Ishac MG; Adkin AL; Supan TJ; Barth DG
    J Biomech; 1999 May; 32(5):545-9. PubMed ID: 10327009
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of gait using a Multiflex foot versus a Quantum foot in knee disarticulation amputees.
    Boonstra AM; Fidler V; Spits GM; Tuil P; Hof AL
    Prosthet Orthot Int; 1993 Aug; 17(2):90-4. PubMed ID: 8233774
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Compensatory mechanism involving the knee joint of the intact limb during gait in unilateral below-knee amputees.
    Beyaert C; Grumillier C; Martinet N; Paysant J; André JM
    Gait Posture; 2008 Aug; 28(2):278-84. PubMed ID: 18295487
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional gait analysis of trans-femoral amputees using two different single-axis prosthetic knees with hydraulic swing-phase control: Kinematic and kinetic comparison of two prosthetic knees.
    Sapin E; Goujon H; de Almeida F; Fodé P; Lavaste F
    Prosthet Orthot Int; 2008 Jun; 32(2):201-18. PubMed ID: 18569888
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Energy storing property of so-called energy-storing prosthetic feet.
    Ehara Y; Beppu M; Nomura S; Kunimi Y; Takahashi S
    Arch Phys Med Rehabil; 1993 Jan; 74(1):68-72. PubMed ID: 8420524
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sound side joint contact forces in below knee amputee gait with an ESAR prosthetic foot.
    Karimi MT; Salami F; Esrafilian A; Heitzmann DWW; Alimusaj M; Putz C; Wolf SI
    Gait Posture; 2017 Oct; 58():246-251. PubMed ID: 28822943
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Compensatory mechanism involving the hip joint of the intact limb during gait in unilateral trans-tibial amputees.
    Grumillier C; Martinet N; Paysant J; André JM; Beyaert C
    J Biomech; 2008 Oct; 41(14):2926-31. PubMed ID: 18771768
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Energy storage and return prostheses: does patient perception correlate with biomechanical analysis?
    Hafner BJ; Sanders JE; Czerniecki J; Fergason J
    Clin Biomech (Bristol); 2002 Jun; 17(5):325-44. PubMed ID: 12084537
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of prosthetic foot roll-over shape arc length on the gait of trans-tibial prosthesis users.
    Hansen AH; Meier MR; Sessoms PH; Childress DS
    Prosthet Orthot Int; 2006 Dec; 30(3):286-99. PubMed ID: 17162519
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: a case series.
    Hill D; Herr H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650375. PubMed ID: 24187194
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Symmetry in external work (SEW): a novel method of quantifying gait differences between prosthetic feet.
    Agrawal V; Gailey R; O'Toole C; Gaunaurd I; Dowell T
    Prosthet Orthot Int; 2009 Jun; 33(2):148-56. PubMed ID: 19367518
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking.
    Gitter A; Czerniecki JM; DeGroot DM
    Am J Phys Med Rehabil; 1991 Jun; 70(3):142-8. PubMed ID: 2039616
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Usability of gait analysis in the alignment of trans-tibial prostheses: a clinical study.
    Van Velzen JM; Houdijk H; Polomski W; Van Bennekom CA
    Prosthet Orthot Int; 2005 Dec; 29(3):255-67. PubMed ID: 16466155
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of changing the inertia of a trans-tibial dynamic elastic response prosthesis on the kinematics and ground reaction force patterns.
    Hillery SC; Wallace ES; McIlhagger R; Watson P
    Prosthet Orthot Int; 1997 Aug; 21(2):114-23. PubMed ID: 9285955
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The influence of prosthetic foot alignment on trans-tibial amputee gait.
    Fridman A; Ona I; Isakov E
    Prosthet Orthot Int; 2003 Apr; 27(1):17-22. PubMed ID: 12812324
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Accelerations due to impact at heel strike using below-knee prosthesis.
    Van Jaarsveld HW; Grootenboer HJ; De Vries J
    Prosthet Orthot Int; 1990 Aug; 14(2):63-6. PubMed ID: 2235301
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [The influence of the C-leg knee-shin system from the Otto Bock Company in the care of above-knee amputees. A clinical-biomechanical study to define indications].
    Wetz HH; Hafkemeyer U; Drerup B
    Orthopade; 2005 Apr; 34(4):298, 300-314, 316-9. PubMed ID: 15812621
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet.
    Torburn L; Powers CM; Guiterrez R; Perry J
    J Rehabil Res Dev; 1995 May; 32(2):111-9. PubMed ID: 7562650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.