These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 94531)

  • 21. Role of presynaptic and postsynaptic IP3-dependent intracellular calcium release in long-term potentiation in sympathetic ganglion of the rat.
    Vargas R; Cifuentes F; Morales MA
    Synapse; 2011 May; 65(5):441-8. PubMed ID: 20853445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stimulus-bound repetitive synaptic firing caused by ethanol in sympathetic ganglion.
    Montoya GA; Riker WK; Russell NJ
    J Pharmacol Exp Ther; 1977 Feb; 200(2):320-7. PubMed ID: 300105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transmitter release: ruthenium red used to demonstrate a possible role of sialic acid containing substrates.
    Baux G; Simonneau M; Tauc L
    J Physiol; 1979 Jun; 291():161-78. PubMed ID: 225472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation of DA1 receptors by dopamine or fenoldopam increases cyclic AMP levels in the renal artery but not in the superior cervical ganglion of the rat.
    Alkadhi KA; Sabouni MH; Ansari AF; Lokhandwala MF
    J Pharmacol Exp Ther; 1986 Aug; 238(2):547-53. PubMed ID: 2874213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of irreversible acetylcholinesterase inhibitors on transmission through sympathetic ganglia of the bullfrog.
    Heppner TJ; Fiekers JF
    Neuropharmacology; 1991 Aug; 30(8):843-54. PubMed ID: 1664071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Concomitant changes in formaldehyde-induced fluorescence of dopamine interneurones and in slow inhibitory post-synaptic potentials of the rabbit superior cervical ganglion, induced by stimulation of the preganglionic nerve or by a muscarinic agent.
    Libet B; Owman C
    J Physiol; 1974 Mar; 237(3):635-62. PubMed ID: 4825476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facilitatory effect of some drugs on transmission in the frog sympathetic ganglion.
    Stolc S; Vlcková E
    J Auton Nerv Syst; 1982 Nov; 6(3):335-45. PubMed ID: 6302155
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Depression of spontaneous and ionophore-induced transmitter release by ruthenium red at the neuromuscular junction.
    Person RJ; Kuhn JA
    Brain Res Bull; 1979; 4(5):669-74. PubMed ID: 487223
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence that ruthenium red disturbs the synaptic transmission in the rat hippocampal slices through interacting with sialic acid residues.
    Wieraszko A
    Brain Res; 1986 Jul; 378(1):120-6. PubMed ID: 2427153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ganglionic slow postsynaptic potentials and muscarinic asynchronous discharge in postganglionic nerve elicited by orthodromic stimulation.
    Ashe JH; Yarosh CA; Crawford MR
    Exp Neurol; 1983 Dec; 82(3):635-49. PubMed ID: 6317424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of repetitive activity, ruthenium red, and elevated extracellular calcium on frog skeletal muscle: implications for t-tubule conduction.
    Howell JN; Oetliker H
    Can J Physiol Pharmacol; 1987 Apr; 65(4):691-6. PubMed ID: 2440544
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of tityustoxin and ruthenium red on the release of acetylcholine from slices of cortex of rat brain.
    Gomez MV; Farrell N
    Neuropharmacology; 1985 Nov; 24(11):1103-7. PubMed ID: 2417154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A bimolecular reaction between bethanechol and muscarinic receptors leading to asynchronous firing in rat superior cervical ganglia.
    Wong KK; McIsaac RJ
    Eur J Pharmacol; 1979 Sep; 58(1):93-4. PubMed ID: 499340
    [No Abstract]   [Full Text] [Related]  

  • 34. Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydroxypyridine (MPTP) on ganglionic transmission.
    Alkadhi KA; Hogan YH
    J Auton Pharmacol; 1992 Feb; 12(1):15-23. PubMed ID: 1313036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potentiation of catecholamine inhibition of ganglionic transmission by delta9-tetrahydrocannabinol.
    Goldstein FJ; Vernot ET; Strahlendorf HK
    Neuropharmacology; 1977 Jan; 16(1):71-2. PubMed ID: 189249
    [No Abstract]   [Full Text] [Related]  

  • 36. The facilitatory actions of 5-hydroxytryptamine and bradykinin in the superior cervical ganglion of the rabbit.
    Wallis DI; Woodward B
    Br J Pharmacol; 1974 Aug; 51(4):521-31. PubMed ID: 4375529
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facilitation and inhibition of cell groups within the superior cervical ganglion of the rabbit.
    Brimble MJ; Wallis DI; Woodward B
    J Physiol; 1972 Nov; 226(3):629-52. PubMed ID: 4344400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ruthenium red effect on mechanical and electrical properties of mammalian skeletal muscle.
    Delbono O; Kotsias BA
    Life Sci; 1989; 45(18):1699-708. PubMed ID: 2479803
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stable enhancement of ruthenium red-insensitive calcium transport in an endoplasmic reticulum-rich fraction following the exposure of isolated rat liver cells to glucagon.
    Taylor WM; Bygrave FL; Blackmore PF; Exton JH
    FEBS Lett; 1979 Aug; 104(1):31-4. PubMed ID: 225203
    [No Abstract]   [Full Text] [Related]  

  • 40. Physiological dissection of various effects of ruthenium red dye on Paramecium cells.
    Kaczanowska J
    Experientia; 1979 Aug; 35(8):1062-4. PubMed ID: 477876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.