These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 9453159)

  • 1. A reliable amplification technique for the characterization of genomic DNA sequences flanking insertion sequences.
    Prod'hom G; Lagier B; Pelicic V; Hance AJ; Gicquel B; Guilhot C
    FEMS Microbiol Lett; 1998 Jan; 158(1):75-81. PubMed ID: 9453159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genomic library-based amplification approach (GL-PCR) for the mapping of multiple IS6110 insertion sites and strain differentiation of Mycobacterium tuberculosis.
    Namouchi A; Mardassi H
    J Microbiol Methods; 2006 Nov; 67(2):202-11. PubMed ID: 16725220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient amplification of multiple transposon-flanking sequences.
    Kwon YM; Ricke SC
    J Microbiol Methods; 2000 Aug; 41(3):195-9. PubMed ID: 10958964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplification and detection of transposon insertion flanking sequences using fluorescent muAFLP.
    Edwards D; Coghill J; Batley J; Holdsworth M; Edwards KJ
    Biotechniques; 2002 May; 32(5):1090-2, 1094, 1096-7. PubMed ID: 12019782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid discrimination of Mycobacterium tuberculosis complex strains by ligation-mediated PCR fingerprint analysis.
    Prod'hom G; Guilhot C; Gutierrez MC; Varnerot A; Gicquel B; Vincent V
    J Clin Microbiol; 1997 Dec; 35(12):3331-4. PubMed ID: 9399550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DLA-based strategies for cloning insertion mutants: cloning the gl4 locus of maize using Mu transposon tagged alleles.
    Liu S; Dietrich CR; Schnable PS
    Genetics; 2009 Dec; 183(4):1215-25. PubMed ID: 19805815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping Transposon Insertion Sites by Inverse Polymerase Chain Reaction and Sanger Sequencing.
    Figueroa-Bossi N; Balbontín R; Bossi L
    Cold Spring Harb Protoc; 2024 May; 2024(5):108197. PubMed ID: 37188521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An inverse PCR technique to rapidly isolate the flanking DNA of dictyostelium insertion mutants.
    Keim M; Williams RS; Harwood AJ
    Mol Biotechnol; 2004 Mar; 26(3):221-4. PubMed ID: 15004291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An alternative inverse PCR (IPCR) method to amplify DNA sequences flanking Tn5 transposon insertions.
    Martin VJ; Mohn WW
    J Microbiol Methods; 1999 Mar; 35(2):163-6. PubMed ID: 10192049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling down: a PCR-based method to efficiently screen for desired knockouts in a high density Mycobacterium tuberculosis picked mutant library.
    Lane JM; Rubin EJ
    Tuberculosis (Edinb); 2006; 86(3-4):310-3. PubMed ID: 16527544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional screening of bacterial genome for virulence genes by transposon footprinting.
    Kwon YM; Kubena LF; Nisbet DJ; Ricke SC
    Methods Enzymol; 2002; 358():141-52. PubMed ID: 12474384
    [No Abstract]   [Full Text] [Related]  

  • 12. Transposon mutagenesis of Mycoplasma gallisepticum by conjugation with enterococcus faecalis and determination of insertion site by direct genomic sequencing.
    Ruffin DC; van Santen VL; Zhang Y; Voelker LL; Panangala VS; Dybvig K
    Plasmid; 2000 Sep; 44(2):191-5. PubMed ID: 10964629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliable determination of transposon insertion site in prokaryotes by direct sequencing.
    Qimron U; Madar N; Ascarelli-Goell R; Elgrably-Weiss M; Altuvia S; Porgador A
    J Microbiol Methods; 2003 Jul; 54(1):137-40. PubMed ID: 12732433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digestion-ligation-amplification (DLA): a simple genome walking method to amplify unknown sequences flanking mutator (Mu) transposons and thereby facilitate gene cloning.
    Liu S; Hsia AP; Schnable PS
    Methods Mol Biol; 2013; 1057():167-76. PubMed ID: 23918428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic flank-sequencing of plasposon insertion sites for rapid identification of functional genes.
    Leveau JH; Gerards S; Fritsche K; Zondag G; van Veen JA
    J Microbiol Methods; 2006 Aug; 66(2):276-85. PubMed ID: 16457898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid amplification and cloning of Tn5 flanking fragments by inverse PCR.
    Huang G; Zhang L; Birch RG
    Lett Appl Microbiol; 2000 Aug; 31(2):149-53. PubMed ID: 10972718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymerase chain reaction using IS6110 primer to detect Mycobacterium tuberculosis in clinical samples.
    Gunisha P; Madhavan HN; Jayanthi U; Therese KL
    Indian J Pathol Microbiol; 2000 Oct; 43(4):395-402. PubMed ID: 11344601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing insertion libraries in two Pseudomonas aeruginosa strains to assess gene essentiality.
    Liberati NT; Urbach JM; Thurber TK; Wu G; Ausubel FM
    Methods Mol Biol; 2008; 416():153-69. PubMed ID: 18392966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse dot blot assay (insertion site typing) for precise detection of sites of IS6110 insertion in the Mycobacterium tuberculosis genome.
    Steinlein LM; Crawford JT
    J Clin Microbiol; 2001 Mar; 39(3):871-8. PubMed ID: 11230397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid identification and mapping of insertion sequences in Escherichia coli genomes using vectorette PCR.
    Zhong S; Dean AM
    BMC Microbiol; 2004 Jul; 4():26. PubMed ID: 15242519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.