These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9453163)

  • 1. Amino acid uptake is strongly affected during exponential growth of Saccharomyces cerevisiae in 0.7 M NaCl medium.
    Norbeck J; Blomberg A
    FEMS Microbiol Lett; 1998 Jan; 158(1):121-6. PubMed ID: 9453163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The osmotic hypersensitivity of the yeast Saccharomyces cerevisiae is strain and growth media dependent: quantitative aspects of the phenomenon.
    Blomberg A
    Yeast; 1997 May; 13(6):529-39. PubMed ID: 9178504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of NaCl on kinetics of D-glucosamine uptake in yeasts differing in halotolerance.
    Lindman B
    Antonie Van Leeuwenhoek; 1981; 47(4):297-306. PubMed ID: 7044305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of AAT1: a gene involved in the regulation of amino acid transport in Saccharomyces cerevisiae.
    Garrett JM
    J Gen Microbiol; 1989 Sep; 135(9):2429-37. PubMed ID: 2697749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein expression during exponential growth in 0.7 M NaCl medium of Saccharomyces cerevisiae.
    Norbeck J; Blomberg A
    FEMS Microbiol Lett; 1996 Mar; 137(1):1-8. PubMed ID: 8935650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of NaCl on the uptake of alpha-[14C]aminoisobutyric acid by the halotolerant bacterium Halomonas elongata.
    Martin EL; Duryea-Rice T; Vreeland RH; Hilsabeck L; Davis C
    Can J Microbiol; 1983 Oct; 29(10):1424-9. PubMed ID: 6661704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L-leucine transport systems in Saccharomyces cerevisiae participation of GAP1, S1 and S2 transport systems.
    Kotliar N; Stella CA; Ramos EH; Mattoon JR
    Cell Mol Biol (Noisy-le-grand); 1994 Sep; 40(6):833-42. PubMed ID: 7812191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The production of extracellular and intracellular free amino acids during aerated fermentation of glucose by baker's yeast (Saccharomyces cerevisiae).
    Malaney GW; Tanner RD; Rodrigues AM
    Folia Microbiol (Praha); 1991; 36(5):468-77. PubMed ID: 1821872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological basis for the high salt tolerance of Debaryomyces hansenii.
    Prista C; Almagro A; Loureiro-Dias MC; Ramos J
    Appl Environ Microbiol; 1997 Oct; 63(10):4005-9. PubMed ID: 9327565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cysteine transport system of Saccharomyces cerevisiae.
    Ono B; Naito K
    Yeast; 1991 Nov; 7(8):849-55. PubMed ID: 1789006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of amino acid transport by sphingoid long chain bases in Saccharomyces cerevisiae.
    Skrzypek MS; Nagiec MM; Lester RL; Dickson RC
    J Biol Chem; 1998 Jan; 273(5):2829-34. PubMed ID: 9446592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global changes in protein synthesis during adaptation of the yeast Saccharomyces cerevisiae to 0.7 M NaCl.
    Blomberg A
    J Bacteriol; 1995 Jun; 177(12):3563-72. PubMed ID: 7768867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein synthesis in germinating Saccharomyces cerevisiae ascospores.
    Armstrong RL; West TP; Magee PT
    Can J Microbiol; 1984 Mar; 30(3):345-52. PubMed ID: 6372976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osmostress-induced changes in yeast gene expression.
    Varela JC; van Beekvelt C; Planta RJ; Mager WH
    Mol Microbiol; 1992 Aug; 6(15):2183-90. PubMed ID: 1406258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-affinity uptake system for branched-chain amino acids in Saccharomyces cerevisiae.
    Tullin S; Gjermansen C; Kielland-Brandt MC
    Yeast; 1991 Dec; 7(9):933-41. PubMed ID: 1803818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABA uptake in a Saccharomyces cerevisiae strain.
    Bermúdez Moretti M; Correa García S; Ramos EH; Batlle A
    Cell Mol Biol (Noisy-le-grand); 1995 Sep; 41(6):843-9. PubMed ID: 8535178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution to the physiological characterization of glycerol active uptake in Saccharomyces cerevisiae.
    Lages F; Lucas C
    Biochim Biophys Acta; 1997 Nov; 1322(1):8-18. PubMed ID: 9398075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae.
    Vuralhan Z; Luttik MA; Tai SL; Boer VM; Morais MA; Schipper D; Almering MJ; Kötter P; Dickinson JR; Daran JM; Pronk JT
    Appl Environ Microbiol; 2005 Jun; 71(6):3276-84. PubMed ID: 15933030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in Saccharomyces cerevisiae which confer resistance to several amino acid analogs.
    McCusker JH; Haber JE
    Mol Cell Biol; 1990 Jun; 10(6):2941-9. PubMed ID: 2188104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of ammonium ions on the uptake of L-leucine in Saccharomyces cerevisiae. Repression and inhibition of transport systems].
    Kotliar N; Stella CA; Ramos EH
    Rev Argent Microbiol; 1990; 22(1):7-16. PubMed ID: 2274663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.