These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9453225)

  • 21. Effects of valproate in a model nervous system (buccal ganglia of Helix pomatia): II. Epileptogenic actions.
    Altrup U; Reith H; Speckmann EJ
    Epilepsia; 1992; 33(4):753-9. PubMed ID: 1628594
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Synapses identifiable in the parietal ganglia of the snail Helix lucorum].
    Palikhova TA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2000; 50(5):775-90. PubMed ID: 11084995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of serotonin levels on postsynaptically induced potentiation of snail neuron responses.
    Malyshev AYu ; Bravarenko NI; Pivovarov AS; Balaban PM
    Neurosci Behav Physiol; 1998; 28(5):556-63. PubMed ID: 9809296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of pentylenetetrazol on the metacerebral neuron of Helix pomatia.
    Fehér O; Erdélyi L; Papp A
    Gen Physiol Biophys; 1988 Oct; 7(5):505-16. PubMed ID: 3234739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous blockade of intracellular calcium increases and of neuronal epileptiform depolarizations by verapamil.
    Wiemann M; Jones D; Straub H; Altrup U; Speckmann EJ
    Brain Res; 1996 Sep; 734(1-2):49-54. PubMed ID: 8896807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decrease of free calcium concentration at the outer surface of identified snail neurons during paroxysmal depolarization shifts.
    Lücke A; Speckmann EJ; Altrup U; Lehmenkühler A; Walden J
    Neurosci Lett; 1990 May; 112(2-3):190-3. PubMed ID: 2359518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of cooling on the acetylcholine-induced current of identified Helix pomatia Br neuron.
    Nedeljkovic M; Kartelija G; Radenovic L; Todorovic N
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 May; 191(5):455-60. PubMed ID: 15759140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differentiation between anti- and orthodromic responses to nerve stimulation in neurons with axo-axonal synapses (Helix pomatia).
    Altrup U; Speckmann EJ; Caspers H
    Neurosci Lett; 1979 Mar; 11(3):313-6. PubMed ID: 229437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. S-100-immunoreactivity in spontaneously active snail neurons.
    Kubista H; Kerschbaum HH; Hermann A
    Brain Res; 1996 Apr; 716(1-2):53-8. PubMed ID: 8738220
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms of up-regulation of single calcium channels by serotonin in Helix pomatia neurons.
    Lukyanetz EA; Sotkis AV; Kostyuk PG
    Biochem Biophys Res Commun; 2002 Apr; 293(1):132-8. PubMed ID: 12054574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large conductance Ca(2+)-activated K+ channels are involved in both spike shaping and firing regulation in Helix neurones.
    Crest M; Gola M
    J Physiol; 1993 Jun; 465():265-87. PubMed ID: 8229836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intrasomatically recorded action potentials in snail neurons (Helix pomatia): different shapes with different sites of origin in the neuronal arborization. A combined morphological and electrophysiological study.
    Altrup U; Speckmann EJ
    Comp Biochem Physiol A Comp Physiol; 1984; 77(2):225-30. PubMed ID: 6142792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mono- and polysynaptic connections between identified neurons in the system of the passive avoidance reflex of the snail.
    Palikhova TA; Marakueva IV; Arakelov GG
    Neurosci Behav Physiol; 1994; 24(1):71-6. PubMed ID: 8208385
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuroanatomical, immunocytochemical, and physiological studies of the pharyngeal retractor muscle and its putative regulatory neurons playing a role in withdrawal and feeding in the snail, Helix pomatia.
    Hernádi L; Vehovszky A; Hiripi L; Györi J; Walker RJ; Elekes K
    Cell Tissue Res; 2005 Aug; 321(2):257-71. PubMed ID: 15959810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GABA-responses of CA3 neurones at epileptogenic threshold concentrations of convulsants.
    Bonnet U; Bingmann D
    Neuroreport; 1993 Jun; 4(6):715-8. PubMed ID: 8347814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acetylcholine responses of identified neurons in Helix pomatia--I. Interactions between acetylcholine-induced and potential-dependent membrane conductances.
    Witte OW; Speckmann EJ; Walden J
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 80(1):15-23. PubMed ID: 2858336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. S-100-immunoreactive protein in Helix neurons.
    Hermann A; Kubista H; Kerschbaum HH
    Acta Biol Hung; 1995; 46(2-4):401-11. PubMed ID: 8853711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Axonal pathways and synaptic inputs of three identified neurons in the buccal ganglion of Helix pomatia.
    Altrup U; Speckmann EJ; Caspers H
    Malacologia; 1979; 18(1-2):473-6. PubMed ID: 491751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Attenuation of a voltage-dependent sodium current by GABA (identified neurons, buccal ganglia, Helix pomatia).
    Haarmeier T; Altrup U; Speckmann EJ
    Brain Res; 1994 Nov; 663(1):131-9. PubMed ID: 7850461
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of Al on the calcium currents in Helix neurons.
    Farkas I; Erdélyi L
    Cell Mol Neurobiol; 1994 Dec; 14(6):809-17. PubMed ID: 7641238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.