BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 9453315)

  • 1. Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation.
    Zou AP; Wu F; Cowley AW
    Hypertension; 1998 Jan; 31(1 Pt 2):271-6. PubMed ID: 9453315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local renal medullary L-NAME infusion enhances the effect of long-term angiotensin II treatment.
    Szentiványi M; Maeda CY; Cowley AW
    Hypertension; 1999 Jan; 33(1 Pt 2):440-5. PubMed ID: 9931144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. alpha(2)-adrenergic receptor-mediated increase in NO production buffers renal medullary vasoconstriction.
    Zou AP; Cowley AW
    Am J Physiol Regul Integr Comp Physiol; 2000 Sep; 279(3):R769-77. PubMed ID: 10956233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of nitric oxide synthase 1 on blood flow and interstitial nitric oxide in the kidney.
    Kakoki M; Zou AP; Mattson DL
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R91-7. PubMed ID: 11404282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal cortical and medullary blood flow responses to L-NAME and ANG II in wild-type, nNOS null mutant, and eNOS null mutant mice.
    Mattson DL; Meister CJ
    Am J Physiol Regul Integr Comp Physiol; 2005 Oct; 289(4):R991-7. PubMed ID: 15961532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal medullary nitric oxide deficit of Dahl S rats enhances hypertensive actions of angiotensin II.
    Szentiványi M; Zou AP; Mattson DL; Soares P; Moreno C; Roman RJ; Cowley AW
    Am J Physiol Regul Integr Comp Physiol; 2002 Jul; 283(1):R266-72. PubMed ID: 12069953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood flow-dependent changes in renal interstitial guanosine 3',5'-cyclic monophosphate in rabbits.
    Nishiyama A; Kimura S; Fukui T; Rahman M; Yoneyama H; Kosaka H; Abe Y
    Am J Physiol Renal Physiol; 2002 Feb; 282(2):F238-44. PubMed ID: 11788437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between nitric oxide and angiotensin II on renal cortical and papillary blood flow.
    Madrid MI; García-Salom M; Tornel J; de Gasparo M; Fenoy FJ
    Hypertension; 1997 Nov; 30(5):1175-82. PubMed ID: 9369273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide in the renal medulla protects from vasopressin-induced hypertension.
    Szentiványi M; Park F; Maeda CY; Cowley AW
    Hypertension; 2000 Mar; 35(3):740-5. PubMed ID: 10720588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Mar; 43(3):577-86. PubMed ID: 16520177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2005 Sep; 42(3):524-31. PubMed ID: 16171601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelial nitric oxide synthase protein is reduced in the renal medulla of two-kidney, one-clip hypertensive rats.
    Wickman A; Andersson IJ; Jia J; Hedin L; Bergström G
    J Hypertens; 2001 Sep; 19(9):1665-73. PubMed ID: 11564988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of exogenous angiotensin II on renal tissue nitric oxide and intrarenal circulation in anaesthetized rats.
    Badzyńska B; Grzelec-Mojzesowicz M; Sadowski J
    Acta Physiol Scand; 2004 Nov; 182(3):313-8. PubMed ID: 15491410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abnormal renal medullary response to angiotensin II in SHR is corrected by long-term enalapril treatment.
    Dukacz SA; Feng MG; Yang LF; Lee RM; Kline RL
    Am J Physiol Regul Integr Comp Physiol; 2001 Apr; 280(4):R1076-84. PubMed ID: 11247830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prostaglandins but not nitric oxide protect renal medullary perfusion in anaesthetised rats receiving angiotensin II.
    Badzyńska B; Grzelec-Mojzesowicz M; Sadowski J
    J Physiol; 2003 May; 548(Pt 3):875-80. PubMed ID: 12640010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiotensin II and renal medullary blood flow in Lyon rats.
    Sarkis A; Liu KL; Lo M; Benzoni D
    Am J Physiol Renal Physiol; 2003 Feb; 284(2):F365-72. PubMed ID: 12529274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide in renal cortex and medulla. An in vivo microdialysis study.
    Zou AP; Cowley AW
    Hypertension; 1997 Jan; 29(1 Pt 2):194-8. PubMed ID: 9039101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased activity and expression of Ca(2+)-dependent NOS in renal cortex of ANG II-infused hypertensive rats.
    Chin SY; Pandey KN; Shi SJ; Kobori H; Moreno C; Navar LG
    Am J Physiol; 1999 Nov; 277(5):F797-804. PubMed ID: 10564245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.
    Persson P; Fasching A; Teerlink T; Hansell P; Palm F
    Am J Physiol Renal Physiol; 2017 Feb; 312(2):F278-F283. PubMed ID: 27927650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.