These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. A GAPDH-mediated trans-nitrosylation pathway is required for feedback inhibition of bile salt synthesis in rat liver. Rodríguez-Ortigosa CM; Celay J; Olivas I; Juanarena N; Arcelus S; Uriarte I; Marín JJ; Avila MA; Medina JF; Prieto J Gastroenterology; 2014 Nov; 147(5):1084-93. PubMed ID: 25066374 [TBL] [Abstract][Full Text] [Related]
43. Hepatocyte growth factor induces MAT2A expression and histone acetylation in rat hepatocytes: role in liver regeneration. Latasa MU; Boukaba A; García-Trevijano ER; Torres L; Rodríguez JL; Caballería J; Lu SC; López-Rodas G; Franco L; Mato JM; Avila MA FASEB J; 2001 May; 15(7):1248-50. PubMed ID: 11344103 [No Abstract] [Full Text] [Related]
44. Transcription of the MAT2A gene, coding for methionine adenosyltransferase, is up-regulated by E2F and Sp1 at a chromatin level during proliferation of liver cells. Rodríguez JL; Boukaba A; Sandoval J; Georgieva EI; Latasa MU; García-Trevijano ER; Serviddio G; Nakamura T; Avila MA; Sastre J; Torres L; Mato JM; López-Rodas G Int J Biochem Cell Biol; 2007; 39(4):842-50. PubMed ID: 17317269 [TBL] [Abstract][Full Text] [Related]
45. mTORC1-independent translation control in mammalian cells by methionine adenosyltransferase 2A and S-adenosylmethionine. Alam M; Shima H; Matsuo Y; Long NC; Matsumoto M; Ishii Y; Sato N; Sugiyama T; Nobuta R; Hashimoto S; Liu L; Kaneko MK; Kato Y; Inada T; Igarashi K J Biol Chem; 2022 Jul; 298(7):102084. PubMed ID: 35636512 [TBL] [Abstract][Full Text] [Related]
46. Genetic modification and bioprocess optimization for S-Adenosyl-L-methionine biosynthesis. Hu X; Quinn PJ; Wang Z; Han G; Wang X Subcell Biochem; 2012; 64():327-41. PubMed ID: 23080258 [TBL] [Abstract][Full Text] [Related]
49. Diminished S-adenosylmethionine biosynthesis and its metabolism in a model of hepatocellular carcinoma is recuperated by an adenosine derivative. Lozano-Rosas MG; Chávez E; Velasco-Loyden G; Domínguez-López M; Martínez-Pérez L; Chagoya De Sánchez V Cancer Biol Ther; 2020; 21(1):81-94. PubMed ID: 31552788 [TBL] [Abstract][Full Text] [Related]
50. Methionine adenosyltransferase and S-adenosylmethionine in alcoholic liver disease. Lu SC; Martínez-Chantar ML; Mato JM J Gastroenterol Hepatol; 2006 Oct; 21 Suppl 3():S61-4. PubMed ID: 16958675 [TBL] [Abstract][Full Text] [Related]
51. S-Adenosylmethionine Synthesis Is Regulated by Selective N Shima H; Matsumoto M; Ishigami Y; Ebina M; Muto A; Sato Y; Kumagai S; Ochiai K; Suzuki T; Igarashi K Cell Rep; 2017 Dec; 21(12):3354-3363. PubMed ID: 29262316 [TBL] [Abstract][Full Text] [Related]
53. Methionine adenosyltransferase 2A regulates mouse zygotic genome activation and morula to blastocyst transition†. Sun H; Kang J; Su J; Zhang J; Zhang L; Liu X; Zhang J; Wang F; Lu Z; Xing X; Chen H; Zhang Y Biol Reprod; 2019 Mar; 100(3):601-617. PubMed ID: 30265288 [TBL] [Abstract][Full Text] [Related]
54. Conformational signals in the C-terminal domain of methionine adenosyltransferase I/III determine its nucleocytoplasmic distribution. Reytor E; Pérez-Miguelsanz J; Alvarez L; Pérez-Sala D; Pajares MA FASEB J; 2009 Oct; 23(10):3347-60. PubMed ID: 19497982 [TBL] [Abstract][Full Text] [Related]
55. Effect of hypoxia on nitric oxide production and its synthase gene expression in rat smooth muscle cells. Hong Y; Suzuki S; Yatoh S; Mizutani M; Nakajima T; Bannai S; Sato H; Soma M; Okuda Y; Yamada N Biochem Biophys Res Commun; 2000 Feb; 268(2):329-32. PubMed ID: 10679203 [TBL] [Abstract][Full Text] [Related]
56. Metabolism of S-adenosylmethionine in rat hepatocytes: transfer of methyl group from S-adenosylmethionine by methyltransferase reactions. Tsukada K; Abe T; Kuwahata T; Mitsui K Life Sci; 1985 Aug; 37(7):665-72. PubMed ID: 4021733 [TBL] [Abstract][Full Text] [Related]
57. Abscisic acid, H2O2 and nitric oxide interactions mediated cold-induced S-adenosylmethionine synthetase in Medicago sativa subsp. falcata that confers cold tolerance through up-regulating polyamine oxidation. Guo Z; Tan J; Zhuo C; Wang C; Xiang B; Wang Z Plant Biotechnol J; 2014 Jun; 12(5):601-12. PubMed ID: 24517136 [TBL] [Abstract][Full Text] [Related]
58. Effect of ursodeoxycholic acid on methionine adenosyltransferase activity and hepatic glutathione metabolism in rats. Rodríguez-Ortigosa CM; Cincu RN; Sanz S; Ruiz F; Quiroga J; Prieto J Gut; 2002 May; 50(5):701-6. PubMed ID: 11950820 [TBL] [Abstract][Full Text] [Related]
59. High-Throughput Screening and Directed Evolution of Methionine Adenosyltransferase from Escherichia coli. Cao C; Nie K; Xu H; Liu L Appl Biochem Biotechnol; 2023 Jul; 195(7):4053-4066. PubMed ID: 36652094 [TBL] [Abstract][Full Text] [Related]
60. Overexpression of methionine adenosyltransferase in Corynebacterium glutamicum for production of S-adenosyl-l-methionine. Han G; Hu X; Wang X Biotechnol Appl Biochem; 2016 Sep; 63(5):679-689. PubMed ID: 26238196 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]