BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9453573)

  • 1. Na+-dependent and phlorizin-inhibitable transport of glucose and cycasin in brain endothelial cells.
    Matsuoka T; Nishizaki T; Kisby GE
    J Neurochem; 1998 Feb; 70(2):772-7. PubMed ID: 9453573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low glucose enhances Na+/glucose transport in bovine brain artery endothelial cells.
    Nishizaki T; Matsuoka T
    Stroke; 1998 Apr; 29(4):844-9. PubMed ID: 9550521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of cycasin by the intestinal Na+/glucose cotransporter.
    Hirayama B; Hazama A; Loo DF; Wright EM; Kisby GE
    Biochim Biophys Acta; 1994 Jul; 1193(1):151-4. PubMed ID: 8038185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hexose uptake in primary cultures of bovine brain microvessel endothelial cells. I. Basic characteristics and effects of D-glucose and insulin.
    Takakura Y; Kuentzel SL; Raub TJ; Davies A; Baldwin SA; Borchardt RT
    Biochim Biophys Acta; 1991 Nov; 1070(1):1-10. PubMed ID: 1751515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside.
    Brot-Laroche E; Supplisson S; Delhomme B; Alcalde AI; Alvarado F
    Biochim Biophys Acta; 1987 Nov; 904(1):71-80. PubMed ID: 3663668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of Na(+)-coupled sugar transport in HT-29 cells: modulation by glucose.
    Blais A
    Am J Physiol; 1991 Jun; 260(6 Pt 1):C1245-52. PubMed ID: 2058655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium-coupled glucose transporter as a functional glucose sensor of retinal microvascular circulation.
    Wakisaka M; Kitazono T; Kato M; Nakamura U; Yoshioka M; Uchizono Y; Yoshinari M
    Circ Res; 2001 Jun; 88(11):1183-8. PubMed ID: 11397785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium-glucose cotransporters display sodium- and phlorizin-dependent water permeability.
    Loike JD; Hickman S; Kuang K; Xu M; Cao L; Vera JC; Silverstein SC; Fischbarg J
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1774-9. PubMed ID: 8944663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarity of transport of 2-deoxy-D-glucose and D-glucose by cultured renal epithelia (LLC-PK1).
    Miller JH; Mullin JM; McAvoy E; Kleinzeller A
    Biochim Biophys Acta; 1992 Oct; 1110(2):209-17. PubMed ID: 1390850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium-dependent co-transported analogues of glucose stimulate ornithine decarboxylase mRNA expression in LLC-PK1 cells.
    Benis RC; Lundgren DW
    Biochem J; 1993 Feb; 289 ( Pt 3)(Pt 3):751-6. PubMed ID: 8435072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fluorescence method for measurement of glucose transport in kidney cells.
    Blodgett AB; Kothinti RK; Kamyshko I; Petering DH; Kumar S; Tabatabai NM
    Diabetes Technol Ther; 2011 Jul; 13(7):743-51. PubMed ID: 21510766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of the new chemotherapeutic agent beta-D-glucosylisophosphoramide mustard (D-19575) into tumor cells is mediated by the Na+-D-glucose cotransporter SAAT1.
    Veyhl M; Wagner K; Volk C; Gorboulev V; Baumgarten K; Weber WM; Schaper M; Bertram B; Wiessler M; Koepsell H
    Proc Natl Acad Sci U S A; 1998 Mar; 95(6):2914-9. PubMed ID: 9501190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A functional role for sodium-dependent glucose transport across the blood-brain barrier during oxygen glucose deprivation.
    Vemula S; Roder KE; Yang T; Bhat GJ; Thekkumkara TJ; Abbruscato TJ
    J Pharmacol Exp Ther; 2009 Feb; 328(2):487-95. PubMed ID: 18981287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trans-hydroxyl group configuration on carbons 2 and 3 of glucose. Responsible for acute inhibition of myo-inositol transport?
    Yorek MA; Stefani MR; Dunlap JA; Ro KS; Davidson EP
    Diabetes; 1991 Aug; 40(8):1016-23. PubMed ID: 1860553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-clamp studies of the Na+/glucose cotransporter cloned from rabbit small intestine.
    Birnir B; Loo DD; Wright EM
    Pflugers Arch; 1991 Mar; 418(1-2):79-85. PubMed ID: 2041729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cycad toxin-induced damage of rodent and human pancreatic beta-cells.
    Eizirik DL; Kisby GE
    Biochem Pharmacol; 1995 Jul; 50(3):355-65. PubMed ID: 7646537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium transport through the cerebral sodium-glucose transporter exacerbates neuron damage during cerebral ischaemia.
    Yamazaki Y; Harada S; Wada T; Yoshida S; Tokuyama S
    J Pharm Pharmacol; 2016 Jul; 68(7):922-31. PubMed ID: 27139580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The characteristics of glucose transport across the blood brain barrier and its relation to cerebral glucose metabolism.
    Betz AL; Gilboe DD; Drewes LR
    Adv Exp Med Biol; 1976; 69():133-49. PubMed ID: 782188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two sodium ion/D-glucose symport mechanism: membrane potential effects on phlorizin binding.
    Lever JE
    Biochemistry; 1984 Sep; 23(20):4697-702. PubMed ID: 6541946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+-dependent glucose uptake and collagen synthesis by cultured bovine retinal pericytes.
    Wakisaka M; Yoshinari M; Yamamoto M; Nakamura S; Asano T; Himeno T; Ichikawa K; Doi Y; Fujishima M
    Biochim Biophys Acta; 1997 Nov; 1362(1):87-96. PubMed ID: 9434103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.