These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 9454470)

  • 1. [Differences in human evoked visual potentials depending on the capacity for the self-regulation of their parameters by feedback].
    Mnatsakanian EV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1997; 47(5):898-907. PubMed ID: 9454470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Changes in the components of the human visual evoked potential during conditioning using biological feedback].
    Mnatsakanian EV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1996; 46(3):479-87. PubMed ID: 8755050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The conditioning of the N100-P200 component of the human visual evoked potential by using biofeedback].
    Mnatsakanian EV; Dorokhov VB
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1995; 45(4):676-85. PubMed ID: 8540251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Changes in spontaneous slow potentials and visually (flash) evoked potentials in response to stimuli with no performance implication].
    Sammer G
    Z Exp Angew Psychol; 1992; 39(2):299-316. PubMed ID: 1413922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-frequency analysis of visual evoked potentials for interhemispheric transfer time and proportion in callosal fibers of different diameters.
    Ulusoy I; Halici U; Nalçaci E; Anaç I; Leblebicio Eroğlu K; Başar-Eroğlu C
    Biol Cybern; 2004 Apr; 90(4):291-301. PubMed ID: 15085348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An auditory brain-computer interface based on the self-regulation of slow cortical potentials.
    Pham M; Hinterberger T; Neumann N; Kübler A; Hofmayer N; Grether A; Wilhelm B; Vatine JJ; Birbaumer N
    Neurorehabil Neural Repair; 2005 Sep; 19(3):206-18. PubMed ID: 16093411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Spatio-temporal distribution of chromatic VEPs].
    Liu D; Li Y; Zhu Y; Zhao L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):253-7. PubMed ID: 19499781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diurnal variations in the cortical visual and auditory evoked potentials.
    Piperova-Dulbokova D; Dincheva E
    Acta Physiol Pharmacol Bulg; 1980; 6(4):37-46. PubMed ID: 7198862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of ongoing alpha rhythm on the visual evoked potential.
    Becker R; Ritter P; Villringer A
    Neuroimage; 2008 Jan; 39(2):707-16. PubMed ID: 17977023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Visual evoked potentials and the P300 component in different courses of the posttraumatic vegetative state].
    Troshina EM; Sharova EV; Zaĭtsev OS; Oknina LB; Masherov EL
    Zh Vopr Neirokhir Im N N Burdenko; 1999; (3):21-6. PubMed ID: 10599160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correspondence of visual evoked potentials with FMRI signals in human visual cortex.
    Whittingstall K; Wilson D; Schmidt M; Stroink G
    Brain Topogr; 2008 Dec; 21(2):86-92. PubMed ID: 18841455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence of pattern onset responses in the human visual areas: an fMRI constrained VEP source analysis.
    Vanni S; Warnking J; Dojat M; Delon-Martin C; Bullier J; Segebarth C
    Neuroimage; 2004 Mar; 21(3):801-17. PubMed ID: 15006647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ERP topography and human perceptual learning in the peripheral visual field.
    Shoji H; Skrandies W
    Int J Psychophysiol; 2006 Aug; 61(2):179-87. PubMed ID: 16356572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Recognition of joy, anger, and fear by face expression in humans].
    Mikhaĭlova ES; Nikitaeva ES; Davydov DV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2001; 51(4):443-51. PubMed ID: 11605422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sex differences in visual evoked potential and electroencephalogram of healthy adults.
    Kaneda Y; Nakayama H; Kagawa K; Furuta N; Ikuta T
    Tokushima J Exp Med; 1996 Dec; 43(3-4):143-57. PubMed ID: 9100463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of stimulus localisation on motion-onset VEP.
    Kremlácek J; Kuba M; Chlubnová J; Kubová Z
    Vision Res; 2004 Dec; 44(26):2989-3000. PubMed ID: 15474572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gender-selective effects of the P300 and N400 components of the visual evoked potential.
    Steffensen SC; Ohran AJ; Shipp DN; Hales K; Stobbs SH; Fleming DE
    Vision Res; 2008 Mar; 48(7):917-25. PubMed ID: 18291436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Visual evoked potentials to illusory contours (Kanizsa's square)].
    Korshunova SG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1998; 48(5):807-15. PubMed ID: 9949530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High test-retest reliability of checkerboard reversal visual evoked potentials (VEP) over 8 months.
    Sarnthein J; Andersson M; Zimmermann MB; Zumsteg D
    Clin Neurophysiol; 2009 Oct; 120(10):1835-40. PubMed ID: 19762276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between visually evoked cerebral blood flow velocity responses and visual-evoked potentials.
    Zaletel M; Strucl M; Rodi Z; Zvan B
    Neuroimage; 2004 Aug; 22(4):1784-9. PubMed ID: 15275934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.