BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 9454574)

  • 1. Transmembrane domain of cystic fibrosis transmembrane conductance regulator: design, characterization, and secondary structure of synthetic peptides m1-m6.
    Wigley WC; Vijayakumar S; Jones JD; Slaughter C; Thomas PJ
    Biochemistry; 1998 Jan; 37(3):844-53. PubMed ID: 9454574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the extracellular loop in the folding of a CFTR transmembrane helical hairpin.
    Wehbi H; Rath A; Glibowicka M; Deber CM
    Biochemistry; 2007 Jun; 46(24):7099-106. PubMed ID: 17516627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cystic fibrosis transmembrane conductance regulator: solution structures of peptides based on the Phe508 region, the most common site of disease-causing DeltaF508 mutation.
    Massiah MA; Ko YH; Pedersen PL; Mildvan AS
    Biochemistry; 1999 Jun; 38(23):7453-61. PubMed ID: 10360942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and purification of two hydrophobic double-spanning membrane proteins derived from the cystic fibrosis transmembrane conductance regulator.
    Therien AG; Glibowicka M; Deber CM
    Protein Expr Purif; 2002 Jun; 25(1):81-6. PubMed ID: 12071702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-native interhelical hydrogen bonds in the cystic fibrosis transmembrane conductance regulator domain modulated by polar mutations.
    Choi MY; Cardarelli L; Therien AG; Deber CM
    Biochemistry; 2004 Jun; 43(25):8077-83. PubMed ID: 15209503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interhelical hydrogen bonds in the CFTR membrane domain.
    Therien AG; Grant FE; Deber CM
    Nat Struct Biol; 2001 Jul; 8(7):597-601. PubMed ID: 11427889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable dimeric assembly of the second membrane-spanning domain of CFTR (cystic fibrosis transmembrane conductance regulator) reconstitutes a chloride-selective pore.
    Ramjeesingh M; Ugwu F; Li C; Dhani S; Huan LJ; Wang Y; Bear CE
    Biochem J; 2003 Nov; 375(Pt 3):633-41. PubMed ID: 12892562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterization and topology of the second potential membrane anchor region in the thromboxane A2 synthase amino-terminal domain.
    Ruan KH; Li D; Ji J; Lin YZ; Gao X
    Biochemistry; 1998 Jan; 37(3):822-30. PubMed ID: 9454571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of peptides corresponding to the seven transmembrane domains of human adenosine A2a receptor.
    Lazarova T; Brewin KA; Stoeber K; Robinson CR
    Biochemistry; 2004 Oct; 43(40):12945-54. PubMed ID: 15461468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An unstable transmembrane segment in the cystic fibrosis transmembrane conductance regulator.
    Tector M; Hartl FU
    EMBO J; 1999 Nov; 18(22):6290-8. PubMed ID: 10562541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of membrane mimicking environment on the conformation of a pore-forming (xSxG)6 peptide.
    Thundimadathil J; Roeske RW; Guo L
    Biopolymers; 2006; 84(3):317-28. PubMed ID: 16463358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of membrane-inserting peptides: spectroscopic characterization with and without lipid bilayers.
    Chung LA; Thompson TE
    Biochemistry; 1996 Sep; 35(35):11343-54. PubMed ID: 8784189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cystic fibrosis transmembrane conductance regulator (CFTR) nucleotide-binding domain 1 (NBD-1) and CFTR truncated within NBD-1 target to the epithelial plasma membrane and increase anion permeability.
    Clancy JP; Hong JS; Bebök Z; King SA; Demolombe S; Bedwell DM; Sorscher EJ
    Biochemistry; 1998 Oct; 37(43):15222-30. PubMed ID: 9790686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A protein sequence that can encode native structure by disfavoring alternate conformations.
    Wigley WC; Corboy MJ; Cutler TD; Thibodeau PH; Oldan J; Lee MG; Rizo J; Hunt JF; Thomas PJ
    Nat Struct Biol; 2002 May; 9(5):381-8. PubMed ID: 11938353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimeric cystic fibrosis transmembrane conductance regulator exists in the plasma membrane.
    Ramjeesingh M; Kidd JF; Huan LJ; Wang Y; Bear CE
    Biochem J; 2003 Sep; 374(Pt 3):793-7. PubMed ID: 12820897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association of domains within the cystic fibrosis transmembrane conductance regulator.
    Ostedgaard LS; Rich DP; DeBerg LG; Welsh MJ
    Biochemistry; 1997 Feb; 36(6):1287-94. PubMed ID: 9063876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cystic fibrosis transmembrane conductance regulator: the purified NBF1+R protein interacts with the purified NBF2 domain to form a stable NBF1+R/NBF2 complex while inducing a conformational change transmitted to the C-terminal region.
    Lu NT; Pedersen PL
    Arch Biochem Biophys; 2000 Mar; 375(1):7-20. PubMed ID: 10683244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topogenesis of cystic fibrosis transmembrane conductance regulator (CFTR): regulation by the amino terminal transmembrane sequences.
    Chen M; Zhang JT
    Biochemistry; 1999 Apr; 38(17):5471-7. PubMed ID: 10220334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical implications of sequence comparisons of the cystic fibrosis transmembrane conductance regulator.
    Tan AL; Ong SA; Venkatesh B
    Arch Biochem Biophys; 2002 May; 401(2):215-22. PubMed ID: 12054472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural studies of synthetic peptides dissected from the voltage-gated sodium channel.
    Doak DG; Mulvey D; Kawaguchi K; Villalain J; Campbell ID
    J Mol Biol; 1996 May; 258(4):672-87. PubMed ID: 8637001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.