BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 9454610)

  • 1. Visualization of NMDA receptor-induced mitochondrial calcium accumulation in striatal neurons.
    Peng TI; Jou MJ; Sheu SS; Greenamyre JT
    Exp Neurol; 1998 Jan; 149(1):1-12. PubMed ID: 9454610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Privileged access to mitochondria of calcium influx through N-methyl-D-aspartate receptors.
    Peng TI; Greenamyre JT
    Mol Pharmacol; 1998 Jun; 53(6):974-80. PubMed ID: 9614198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide promotes intracellular calcium release from mitochondria in striatal neurons.
    Horn TF; Wolf G; Duffy S; Weiss S; Keilhoff G; MacVicar BA
    FASEB J; 2002 Oct; 16(12):1611-22. PubMed ID: 12374784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel.
    Kannurpatti SS; Joshi PG; Joshi NB
    Neurochem Res; 2000 Dec; 25(12):1527-36. PubMed ID: 11152381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide applications prior and simultaneous to potentially excitotoxic NMDA-evoked calcium transients: cell death or survival.
    Schröter A; Andrabi SA; Wolf G; Horn TF
    Brain Res; 2005 Oct; 1060(1-2):1-15. PubMed ID: 16199018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine enhancement of NMDA currents in dissociated medium-sized striatal neurons: role of D1 receptors and DARPP-32.
    Flores-Hernández J; Cepeda C; Hernández-Echeagaray E; Calvert CR; Jokel ES; Fienberg AA; Greengard P; Levine MS
    J Neurophysiol; 2002 Dec; 88(6):3010-20. PubMed ID: 12466426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear fluid-induced Ca2+ release and the role of mitochondria in rat cardiac myocytes.
    Belmonte S; Morad M
    Ann N Y Acad Sci; 2008 Mar; 1123():58-63. PubMed ID: 18375577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CCCP enhances catecholamine release from the perfused rat adrenal medulla.
    Lim DY; Park HG; Miwa S
    Auton Neurosci; 2006 Jul; 128(1-2):37-47. PubMed ID: 16461015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamate-induced destabilization of intracellular calcium concentration homeostasis in cultured cerebellar granule cells: role of mitochondria in calcium buffering.
    Kiedrowski L; Costa E
    Mol Pharmacol; 1995 Jan; 47(1):140-7. PubMed ID: 7838122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial permeability transition and calcium dynamics in striatal neurons upon intense NMDA receptor activation.
    Alano CC; Beutner G; Dirksen RT; Gross RA; Sheu SS
    J Neurochem; 2002 Feb; 80(3):531-8. PubMed ID: 11905998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabotropic receptor-mediated Ca2+ signaling elevates mitochondrial Ca2+ and stimulates oxidative metabolism in hippocampal slice cultures.
    Kann O; Kovács R; Heinemann U
    J Neurophysiol; 2003 Aug; 90(2):613-21. PubMed ID: 12724360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial Ca2+ uptake during simulated ischemia does not affect permeability transition pore opening upon simulated reperfusion.
    Ruiz-Meana M; Garcia-Dorado D; Miró-Casas E; Abellán A; Soler-Soler J
    Cardiovasc Res; 2006 Sep; 71(4):715-24. PubMed ID: 16860295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Modelling of Mg2+, ATP-dependent mitochondrial Ca ions transport in smooth muscle cells using protonophore CCCP-sensitive fluorescent tetracycline].
    Vadziuk OB; Borysova LA; Titus OV; Kosterin SO
    Ukr Biokhim Zh (1999); 2003; 75(4):64-74. PubMed ID: 14681977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histamine induces oscillations of mitochondrial free Ca2+ concentration in single cultured rat brain astrocytes.
    Jou MJ; Peng TI; Sheu SS
    J Physiol; 1996 Dec; 497 ( Pt 2)(Pt 2):299-308. PubMed ID: 8961176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ester derivatives of tournefolic acid B attenuate N-methyl-D-aspartate-mediated excitotoxicity in rat cortical neurons.
    Wang CN; Pan HC; Lin YL; Chi CW; Shiao YJ
    Mol Pharmacol; 2006 Mar; 69(3):950-9. PubMed ID: 16365280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMDA and non-NMDA receptor-mediated differential Ca2+ load and greater vulnerability of motor neurons in spinal cord cultures.
    Sen I; Joshi DC; Joshi PG; Joshi NB
    Neurochem Int; 2008 Jan; 52(1-2):247-55. PubMed ID: 17692996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain mitochondrial defects amplify intracellular [Ca2+] rise and neurodegeneration but not Ca2+ entry during NMDA receptor activation.
    Jacquard C; Trioulier Y; Cosker F; Escartin C; Bizat N; Hantraye P; Cancela JM; Bonvento G; Brouillet E
    FASEB J; 2006 May; 20(7):1021-3. PubMed ID: 16571773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistance to kynurenic acid of the NMDA receptor-dependent toxicity of 3-nitropropionic acid and cyanide in cerebellar granule neurons.
    Fatokun AA; Smith RA; Stone TW
    Brain Res; 2008 Jun; 1215():200-7. PubMed ID: 18486115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ruthenium red-mediated inhibition of large-conductance Ca2+-activated K+ channels in rat pituitary GH3 cells.
    Wu SN; Jan CR; Li HF
    J Pharmacol Exp Ther; 1999 Sep; 290(3):998-1005. PubMed ID: 10454470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular and subcellular calcium accumulation during glutamate-induced injury in cerebellar granule neurons.
    Ward MW; Kushnareva Y; Greenwood S; Connolly CN
    J Neurochem; 2005 Mar; 92(5):1081-90. PubMed ID: 15715659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.