BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 9454844)

  • 21. Optical survey of vagus nerve-related neuronal circuits in the embryonic rat brainstem.
    Momose-Sato Y; Nakamori T; Mullah SH; Sato K
    Neurosci Lett; 2013 Feb; 535():140-5. PubMed ID: 23266474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical analysis of functional development of the facial motor nucleus in the embryonic rat brainstem.
    Momose-Sato Y; Sato K
    Eur J Neurosci; 2018 Nov; 48(10):3273-3287. PubMed ID: 30118560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical mapping of neural network activity in chick spinal cord at an intermediate stage of embryonic development.
    Arai Y; Momose-Sato Y; Sato K; Kamino K
    J Neurophysiol; 1999 Apr; 81(4):1889-902. PubMed ID: 10200224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developmental organization of the glossopharyngeal nucleus in the embryonic chick brainstem slice as revealed by optical sectioning recording.
    Sato K; Mochida H; Sasaki S; Momose-Sato Y
    Neurosci Lett; 2002 Jul; 327(3):157-60. PubMed ID: 12113901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical mapping reveals developmental dynamics of Mg2+-/APV-sensitive components of glossopharyngeal glutamatergic EPSPs in the embryonic chick NTS.
    Sato K; Momose-Sato Y
    J Neurophysiol; 2004 Oct; 92(4):2538-47. PubMed ID: 15175368
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Embryogenetic expression of glossopharyngeal and vagal excitability in the chick brainstem as revealed by voltage-sensitive dye recording.
    Momose-Sato Y; Kinoshita M; Sato K
    Neurosci Lett; 2007 Aug; 423(2):138-42. PubMed ID: 17669592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical detection of developmental origin of synaptic function in the embryonic chick vestibulocochlear nuclei.
    Sato K; Momose-Sato Y
    J Neurophysiol; 2003 Jun; 89(6):3215-24. PubMed ID: 12702716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The embryonic brain and development of vagal pathways.
    Momose-Sato Y; Sato K
    Respir Physiol Neurobiol; 2011 Aug; 178(1):163-73. PubMed ID: 21296688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developmental roles of the spontaneous depolarization wave in synaptic network formation in the embryonic brainstem.
    Momose-Sato Y; Sato K
    Neuroscience; 2017 Dec; 365():33-47. PubMed ID: 28951326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spreading depolarization waves triggered by vagal stimulation in the embryonic chick brain: optical evidence for intercellular communication in the developing central nervous system.
    Momose-Sato Y; Sato K; Mochida H; Yazawa I; Sasaki S; Kamino K
    Neuroscience; 2001; 102(2):245-62. PubMed ID: 11166111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical mapping of spatiotemporal emergence of functional synaptic connections in the embryonic chick olfactory pathway.
    Sato K; Kinoshita M; Momose-Sato Y
    Neuroscience; 2007 Feb; 144(4):1334-46. PubMed ID: 17184922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple-site optical monitoring of neural activity evoked by vagus nerve stimulation in the embryonic chick brain stem.
    Kamino K; Katoh Y; Komuro H; Sato K
    J Physiol; 1989 Feb; 409():263-83. PubMed ID: 2585291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical imaging analysis of neural circuit formation in the embryonic brain.
    Sato K; Momose-Sato Y
    Clin Exp Pharmacol Physiol; 2008 May; 35(5-6):706-13. PubMed ID: 18067593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of functional synaptic connections in the auditory system visualized with optical recording: afferent-evoked activity is present from early stages.
    Momose-Sato Y; Glover JC; Sato K
    J Neurophysiol; 2006 Oct; 96(4):1949-62. PubMed ID: 16790599
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Depolarization waves in the embryonic CNS triggered by multiple sensory inputs and spontaneous activity: optical imaging with a voltage-sensitive dye.
    Momose-Sato Y; Mochida H; Sasaki S; Sato K
    Neuroscience; 2003; 116(2):407-23. PubMed ID: 12559096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prolactin-releasing peptide affects gastric motor function in rat by modulating synaptic transmission in the dorsal vagal complex.
    Grabauskas G; Zhou SY; Das S; Lu Y; Owyang C; Moises HC
    J Physiol; 2004 Dec; 561(Pt 3):821-39. PubMed ID: 15486017
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical detection of embryogenetic expression of vagal excitability in the rat brain stem.
    Sato K; Yazawa I; Mochida H; Sasaki S; Kamino K; Momose-Sato Y
    Neuroreport; 2000 Nov; 11(17):3759-63. PubMed ID: 11117486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical imaging of spreading depolarization waves triggered by spinal nerve stimulation in the chick embryo: possible mechanisms for large-scale coactivation of the central nervous system.
    Mochida H; Sato K; Arai Y; Sasaki S; Kamino K; Momose-Sato Y
    Eur J Neurosci; 2001 Sep; 14(5):809-20. PubMed ID: 11576185
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vagally evoked synaptic currents in the immature rat nucleus tractus solitarii in an intact in vitro preparation.
    Smith BN; Dou P; Barber WD; Dudek FE
    J Physiol; 1998 Oct; 512 ( Pt 1)(Pt 1):149-62. PubMed ID: 9729625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Voltage-sensitive dye recording of glossopharyngeal nerve-related synaptic networks in the embryonic mouse brainstem.
    Momose-Sato Y; Sato K
    IBRO Rep; 2019 Jun; 6():176-184. PubMed ID: 31193501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.