These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 9454857)
1. Synchronizing retinal activity in both eyes disrupts binocular map development in the optic tectum. Brickley SG; Dawes EA; Keating MJ; Grant S J Neurosci; 1998 Feb; 18(4):1491-504. PubMed ID: 9454857 [TBL] [Abstract][Full Text] [Related]
2. Experience-dependent mechanism of binocular map plasticity in Xenopus: incongruent connections are masked by retinal input. Brickley SG; Keating MJ; Grant S Neurosci Lett; 1994 Nov; 182(1):13-6. PubMed ID: 7891877 [TBL] [Abstract][Full Text] [Related]
3. Plasticity in the tectum of Xenopus laevis: binocular maps. Udin SB; Grant S Prog Neurobiol; 1999 Oct; 59(2):81-106. PubMed ID: 10463791 [TBL] [Abstract][Full Text] [Related]
4. The role of visual experience in the formation of binocular projections in frogs. Udin SB Cell Mol Neurobiol; 1985 Jun; 5(1-2):85-102. PubMed ID: 3896495 [TBL] [Abstract][Full Text] [Related]
5. Development of the nucleus isthmi in Xenopus, II: Branching patterns of contralaterally projecting isthmotectal axons during maturation of binocular maps. Udin SB Vis Neurosci; 1989; 2(2):153-63. PubMed ID: 2562146 [TBL] [Abstract][Full Text] [Related]
6. Binocular maps in Xenopus tectum: Visual experience and the development of isthmotectal topography. Udin SB Dev Neurobiol; 2012 Apr; 72(4):564-74. PubMed ID: 21674812 [TBL] [Abstract][Full Text] [Related]
7. Plasticity in the ipsilateral visuotectal projection persists after lesions of one nucleus isthmi in Xenopus. Udin SB Exp Brain Res; 1990; 79(2):338-44. PubMed ID: 2323380 [TBL] [Abstract][Full Text] [Related]
8. Plasticity of binocular visual connections in the frog, Xenopus laevis: reversibility of effects of early visual deprivation. Keating MJ; Dawes EA; Grant S Exp Brain Res; 1992; 90(1):121-8. PubMed ID: 1521600 [TBL] [Abstract][Full Text] [Related]
9. Direct intertectal inputs are an integral component of the bilateral sensorimotor circuit for behavior in Xenopus tadpoles. Gambrill AC; Faulkner RL; Cline HT J Neurophysiol; 2018 May; 119(5):1947-1961. PubMed ID: 29442555 [TBL] [Abstract][Full Text] [Related]
10. Activity-driven sharpening of the retinotectal projection in goldfish: development under stroboscopic illumination prevents sharpening. Schmidt JT; Buzzard M J Neurobiol; 1993 Mar; 24(3):384-99. PubMed ID: 7684064 [TBL] [Abstract][Full Text] [Related]
11. The visual system of the Florida garfish, Lepisosteus platyrhincus (Ginglymodi). IV. Bilateral projections and the binocular visual field. Collin SP; Northcutt RG Brain Behav Evol; 1995; 45(1):34-53. PubMed ID: 7866770 [TBL] [Abstract][Full Text] [Related]
12. Chronic melatonin and binocular plasticity in Xenopus frogs. Udin SB Gen Comp Endocrinol; 2005 Jul; 142(3):274-9. PubMed ID: 15935153 [TBL] [Abstract][Full Text] [Related]
13. The representation of the ipsilateral eye in nucleus isthmi of the leopard frog, Rana pipiens. Winkowski DE; Gruberg ER Vis Neurosci; 2002; 19(5):669-79. PubMed ID: 12507333 [TBL] [Abstract][Full Text] [Related]
14. Changing patterns of binocular visual connections in the intertectal system during development of the frog, Xenopus laevis. I. Normal maturational changes in response to changing binocular geometry. Grant S; Keating MJ Exp Brain Res; 1989; 75(1):99-116. PubMed ID: 2707359 [TBL] [Abstract][Full Text] [Related]
15. Effects of choline and other nicotinic agonists on the tectum of juvenile and adult Xenopus frogs: a patch-clamp study. Titmus MJ; Tsai HJ; Lima R; Udin SB Neuroscience; 1999; 91(2):753-69. PubMed ID: 10366031 [TBL] [Abstract][Full Text] [Related]
16. Superimposed maps of the monocular visual fields in the caudolateral optic tectum in the frog, Rana pipiens. Winkowski DE; Gruberg ER Vis Neurosci; 2005; 22(1):101-9. PubMed ID: 15842745 [TBL] [Abstract][Full Text] [Related]
17. Stroboscopic illumination and dark rearing block the sharpening of the regenerated retinotectal map in goldfish. Schmidt JT; Eisele LE Neuroscience; 1985 Feb; 14(2):535-46. PubMed ID: 2986040 [TBL] [Abstract][Full Text] [Related]
18. Recovery of the ipsilateral oculotectal projection following nerve crush in the frog: evidence that retinal afferents make synapses at abnormal tectal locations. Adamson J; Burke J; Grobstein P J Neurosci; 1984 Oct; 4(10):2635-49. PubMed ID: 6092566 [TBL] [Abstract][Full Text] [Related]
19. Acceleration by NMDA treatment of visually induced map reorganization in juvenile Xenopus after larval eye rotation. Bandarchi J; Scherer WJ; Udin SB J Neurobiol; 1994 Apr; 25(4):451-60. PubMed ID: 8077969 [TBL] [Abstract][Full Text] [Related]
20. Changing patterns of binocular visual connections in the intertectal system during development of the frog, Xenopus laevis. II. Abnormalities following early visual deprivation. Grant S; Keating MJ Exp Brain Res; 1989; 75(1):117-32. PubMed ID: 2707345 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]