These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 9454857)
21. Formation of retinotopic connections: selective stabilization by an activity-dependent mechanism. Schmidt JT Cell Mol Neurobiol; 1985 Jun; 5(1-2):65-84. PubMed ID: 2992788 [TBL] [Abstract][Full Text] [Related]
22. A sharp retinal image increases the topographic precision of the goldfish retinotectal projection during optic nerve regeneration in stroboscopic light. Cook JE Exp Brain Res; 1987; 68(2):319-28. PubMed ID: 3691705 [TBL] [Abstract][Full Text] [Related]
23. Isthmotectal axons make ectopic synapses in monocular regions of the tectum in developing Xenopus laevis frogs. Udin SB; Fisher MD; Norden JJ J Comp Neurol; 1992 Aug; 322(4):461-70. PubMed ID: 1401245 [TBL] [Abstract][Full Text] [Related]
24. NMDA receptor agonist and antagonists alter retinal ganglion cell arbor structure in the developing frog retinotectal projection. Cline HT; Constantine-Paton M J Neurosci; 1990 Apr; 10(4):1197-216. PubMed ID: 2158526 [TBL] [Abstract][Full Text] [Related]
25. Specification of retinotectal connexions during development of the toad Xenopus laevis. Sharma SC; Hollyfield JG J Embryol Exp Morphol; 1980 Feb; 55():77-92. PubMed ID: 7373205 [TBL] [Abstract][Full Text] [Related]
26. The development of the nucleus isthmi in Xenopus laevis. I. Cell genesis and the formation of connections with the tectum. Udin SB; Fisher MD J Comp Neurol; 1985 Feb; 232(1):25-35. PubMed ID: 3973081 [TBL] [Abstract][Full Text] [Related]
27. Latency and temporal overlap of visually elicited contralateral and ipsilateral firing in Xenopus tectum during and after the critical period. Scherer WJ; Udin SB Brain Res Dev Brain Res; 1991 Jan; 58(1):129-32. PubMed ID: 1826641 [TBL] [Abstract][Full Text] [Related]
28. Restoration of the plasticity of binocular maps by NMDA after the critical period in Xenopus. Udin SB; Scherer WJ Science; 1990 Aug; 249(4969):669-72. PubMed ID: 2166343 [TBL] [Abstract][Full Text] [Related]
29. Retinal projections to the superior colliculus and dorsal lateral geniculate nucleus in the tammar wallaby (Macropus eugenii): II. Topography after rotation of an eye prior to retinal innervation of the brain. Marotte LR; Mark RF J Comp Neurol; 1988 May; 271(2):274-92. PubMed ID: 3379165 [TBL] [Abstract][Full Text] [Related]
30. Combining visual information from the two eyes: the relationship between isthmotectal cells that project to ipsilateral and to contralateral optic tectum using fluorescent retrograde labels in the frog, Rana pipiens. Dudkin EA; Sheffield JB; Gruberg ER J Comp Neurol; 2007 May; 502(1):38-54. PubMed ID: 17335048 [TBL] [Abstract][Full Text] [Related]
31. Retinal specificity in eye fragments: investigations on the retinotectal projections of different quarter-eyes in Xenopus laevis. Brändle K; Degen N Exp Brain Res; 1994; 102(2):272-86. PubMed ID: 7705505 [TBL] [Abstract][Full Text] [Related]
32. Precise lamination of retinal axons generates multiple parallel input pathways in the tectum. Robles E; Filosa A; Baier H J Neurosci; 2013 Mar; 33(11):5027-39. PubMed ID: 23486973 [TBL] [Abstract][Full Text] [Related]
33. Nicotine exposure refines visual map topography through an NMDA receptor-mediated pathway. Yan X; Zhao B; Butt CM; Debski EA Eur J Neurosci; 2006 Dec; 24(11):3026-42. PubMed ID: 17156364 [TBL] [Abstract][Full Text] [Related]
35. Retinal distribution of ganglion cells which project to the ipsilateral optic tectum in Bufo marinus. Wye-Dvorak J; Straznicky C Brain Res; 1991 Aug; 555(2):313-8. PubMed ID: 1933341 [TBL] [Abstract][Full Text] [Related]
36. Functional segregation of retinal ganglion cell projections to the optic tectum of rainbow trout. Novales Flamarique I; Wachowiak M J Neurophysiol; 2015 Nov; 114(5):2703-17. PubMed ID: 26334009 [TBL] [Abstract][Full Text] [Related]
37. Control of axon branch dynamics by correlated activity in vivo. Ruthazer ES; Akerman CJ; Cline HT Science; 2003 Jul; 301(5629):66-70. PubMed ID: 12843386 [TBL] [Abstract][Full Text] [Related]
38. Functional topography and integration of the contralateral and ipsilateral retinocollicular projections of ephrin-A-/- mice. Haustead DJ; Lukehurst SS; Clutton GT; Bartlett CA; Dunlop SA; Arrese CA; Sherrard RM; Rodger J J Neurosci; 2008 Jul; 28(29):7376-86. PubMed ID: 18632942 [TBL] [Abstract][Full Text] [Related]
39. Changing patterns of binocular visual connections in the intertectal system during development of the frog, Xenopus laevis. III. Modifications following early eye rotation. Grant S; Keating MJ Exp Brain Res; 1992; 89(2):383-96. PubMed ID: 1623981 [TBL] [Abstract][Full Text] [Related]
40. Normal Topography and Binocularity of the Superior Colliculus in Strabismus. Economides JR; Rapone BC; Adams DL; Horton JC J Neurosci; 2018 Jan; 38(1):173-182. PubMed ID: 29133438 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]