BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9456363)

  • 21. Production and evaluation of Taq DNA polymerase.
    Leelayuwat C; Srisuk T; Paechaiyaphum R; Limpaiboon T; Romphruk A; Romphruk A
    J Med Assoc Thai; 1997 Sep; 80 Suppl 1():S129-37. PubMed ID: 9347660
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A-overhang-dependent repeat expansion determination (ADRED).
    Achmüller C; Köhler A; Bösch S; Schneider R
    Biotechniques; 2008 Nov; 45(5):577-80. PubMed ID: 19007342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The implications of using mutagenic primers in combination with Taq polymerase having proofreading activity.
    Papadopoulou E; Metaxa-Mariatou V; Hatzaki A; Hatzis T; Nasioulas G
    Biologicals; 2004 Jun; 32(2):84-7. PubMed ID: 15454186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Larger trinucleotide repeat size in the androgen receptor gene of infertile men with extremely severe oligozoospermia.
    Patrizio P; Leonard DG; Chen KL; Hernandez-Ayup S; Trounson AO
    J Androl; 2001; 22(3):444-8. PubMed ID: 11330644
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oligonucleotide inhibitors of Taq DNA polymerase facilitate detection of low copy number targets by PCR.
    Dang C; Jayasena SD
    J Mol Biol; 1996 Nov; 264(2):268-78. PubMed ID: 8951376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TaqStart Antibody: "hot start" PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNA polymerase.
    Kellogg DE; Rybalkin I; Chen S; Mukhamedova N; Vlasik T; Siebert PD; Chenchik A
    Biotechniques; 1994 Jun; 16(6):1134-7. PubMed ID: 8074881
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of genetic alterations in esophageal squamous cell carcinomas and adjacent normal epithelia by comparative DNA fingerprinting using inter-simple sequence repeat PCR.
    Tang JC; Lam KY; Law S; Wong J; Srivastava G
    Clin Cancer Res; 2001 Jun; 7(6):1539-45. PubMed ID: 11410488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discrimination of primer 3'-nucleotide mismatch by taq DNA polymerase during polymerase chain reaction.
    Ayyadevara S; Thaden JJ; Shmookler Reis RJ
    Anal Biochem; 2000 Aug; 284(1):11-8. PubMed ID: 10933850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PCR amplification introduces errors into mononucleotide and dinucleotide repeat sequences.
    Clarke LA; Rebelo CS; Gonçalves J; Boavida MG; Jordan P
    Mol Pathol; 2001 Oct; 54(5):351-3. PubMed ID: 11577179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Fluorescence-based semi-automated gene scan with microsatellite markers by multiplex PCR techniques].
    Kuang S; Wang J; Huang W; Zhang Y; Lu L; Cheng Z; Jin L
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 1998 Apr; 15(2):104-7. PubMed ID: 9531652
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new thermostable DNA polymerase mixture for efficient amplification of long DNA fragments.
    Davalieva KG; Efremov GD
    Prikl Biokhim Mikrobiol; 2010; 46(2):248-52. PubMed ID: 20391772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Long-distance PCR of VNTR at the D17S74 (CMM86) locus.
    Kishida T; Tamaki Y; Kuroki K
    Nihon Hoigaku Zasshi; 1996 Jun; 50(3):174-7. PubMed ID: 8752989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel PCR-based approach for the detection of the Huntington disease associated trinucleotide repeat expansion.
    Panagopoulos I; Lassen C; Kristoffersson U; Aman P
    Hum Mutat; 1999; 13(3):232-6. PubMed ID: 10090478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of the N+3 stutter product in the trinucleotide repeat locus DYS392.
    Mulero JJ; Chang CW; Hennessy LK
    J Forensic Sci; 2006 Sep; 51(5):1069-73. PubMed ID: 17018083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel PCR-mediated mutagenesis employing DNA containing a natural abasic site as a template and translesional Taq DNA polymerase.
    Kobayashi A; Kitaoka M; Hayashi K
    J Biotechnol; 2005 Mar; 116(3):227-32. PubMed ID: 15707683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analyses of PCR products using DNA templates containing a consecutive deoxyinosine sequence.
    Kobayashi A; Kitaoka M; Hayashi K
    Nucleic Acids Symp Ser (Oxf); 2004; (48):225-6. PubMed ID: 17150560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of errors in dinucleotide repeat typing by nondenaturing electrophoresis.
    Rodríguez S; Visedo G; Zapata C
    Electrophoresis; 2001 Aug; 22(13):2656-64. PubMed ID: 11545389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimized sequence retrieval from single bands of temperature gradient gel electrophoresis profiles of the amplified 16S rDNA fragments from an activated sludge system.
    Zhang X; Yan X; Gao P; Wang L; Zhou Z; Zhao L
    J Microbiol Methods; 2005 Jan; 60(1):1-11. PubMed ID: 15567219
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Water-soluble eumelanin as a PCR-inhibitor and a simple method for its removal].
    Yoshii T; Tamura K; Taniguchi T; Akiyama K; Ishiyama I
    Nihon Hoigaku Zasshi; 1993 Aug; 47(4):323-9. PubMed ID: 8377274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peak height variations in automated sequencing of PCR products using Taq dye-terminator chemistry.
    Parker LT; Deng Q; Zakeri H; Carlson C; Nickerson DA; Kwok PY
    Biotechniques; 1995 Jul; 19(1):116-21. PubMed ID: 7669285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.