BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 9456384)

  • 21. Depth and rate dependent mechanical behaviors for articular cartilage: experiments and theoretical predictions.
    Gao LL; Zhang CQ; Gao H; Liu ZD; Xiao PP
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():244-51. PubMed ID: 24656375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Depth- and strain-dependent mechanical and electromechanical properties of full-thickness bovine articular cartilage in confined compression.
    Chen AC; Bae WC; Schinagl RM; Sah RL
    J Biomech; 2001 Jan; 34(1):1-12. PubMed ID: 11425068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage.
    Taffetani M; Griebel M; Gastaldi D; Klisch SM; Vena P
    J Mech Behav Biomed Mater; 2014 Apr; 32():17-30. PubMed ID: 24389384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments.
    Mow VC; Kuei SC; Lai WM; Armstrong CG
    J Biomech Eng; 1980 Feb; 102(1):73-84. PubMed ID: 7382457
    [No Abstract]   [Full Text] [Related]  

  • 25. Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage.
    Soltz MA; Ateshian GA
    Ann Biomed Eng; 2000 Feb; 28(2):150-9. PubMed ID: 10710186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression.
    Li LP; Buschmann MD; Shirazi-Adl A
    J Biomech; 2000 Dec; 33(12):1533-41. PubMed ID: 11006376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compressive stress-relaxation behavior of bovine growth plate may be described by the nonlinear biphasic theory.
    Cohen B; Chorney GS; Phillips DP; Dick HM; Mow VC
    J Orthop Res; 1994 Nov; 12(6):804-13. PubMed ID: 7983556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression.
    Gu WY; Yao H; Huang CY; Cheung HS
    J Biomech; 2003 Apr; 36(4):593-8. PubMed ID: 12600349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A nonlinear biphasic fiber-reinforced porohyperviscoelastic model of articular cartilage incorporating fiber reorientation and dispersion.
    Seifzadeh A; Wang J; Oguamanam DC; Papini M
    J Biomech Eng; 2011 Aug; 133(8):081004. PubMed ID: 21950897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finite element formulation of biphasic poroviscoelastic model for articular cartilage.
    Suh JK; Bai S
    J Biomech Eng; 1998 Apr; 120(2):195-201. PubMed ID: 10412380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biphasic analysis of rat brain slices under creep indentation shows nonlinear tension-compression behavior.
    Wang R; Sarntinoranont M
    J Mech Behav Biomed Mater; 2019 Jan; 89():1-8. PubMed ID: 30236976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability.
    Périé D; Korda D; Iatridis JC
    J Biomech; 2005 Nov; 38(11):2164-71. PubMed ID: 16154403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An analysis of the effects of depth-dependent aggregate modulus on articular cartilage stress-relaxation behavior in compression.
    Wang CC; Hung CT; Mow VC
    J Biomech; 2001 Jan; 34(1):75-84. PubMed ID: 11425083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of microindentation to characterize the mechanical properties of articular cartilage: comparison of biphasic material properties across length scales.
    Miller GJ; Morgan EF
    Osteoarthritis Cartilage; 2010 Aug; 18(8):1051-7. PubMed ID: 20417292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relaxation and creep quasilinear viscoelastic models for normal articular cartilage.
    Simon BR; Coats RS; Woo SL
    J Biomech Eng; 1984 May; 106(2):159-64. PubMed ID: 6738021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stress-relaxation response of human menisci under confined compression conditions.
    Martin Seitz A; Galbusera F; Krais C; Ignatius A; Dürselen L
    J Mech Behav Biomed Mater; 2013 Oct; 26():68-80. PubMed ID: 23811278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The apparent viscoelastic behavior of articular cartilage--the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows.
    Mak AF
    J Biomech Eng; 1986 May; 108(2):123-30. PubMed ID: 3724099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A viscoelastic poromechanical model of the knee joint in large compression.
    Kazemi M; Li LP
    Med Eng Phys; 2014 Aug; 36(8):998-1006. PubMed ID: 24933338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biphasic indentation of articular cartilage--I. Theoretical analysis.
    Mak AF; Lai WM; Mow VC
    J Biomech; 1987; 20(7):703-14. PubMed ID: 3654668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Singular perturbation analysis of the nonlinear, flow-dependent compressive stress relaxation behavior of articular cartilage.
    Holmes MH; Lai WM; Mow VC
    J Biomech Eng; 1985 Aug; 107(3):206-18. PubMed ID: 4046561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.