These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 9456509)

  • 1. Light-stimulated release of dopamine from the primate retina is blocked by 1-2-amino-4-phosphonobutyric acid (APB).
    Boelen MK; Boelen MG; Marshak DW
    Vis Neurosci; 1998; 15(1):97-103. PubMed ID: 9456509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopamine modulates the off pathway in light-adapted mouse retina.
    Yang J; Pahng J; Wang GY
    J Neurosci Res; 2013 Jan; 91(1):138-50. PubMed ID: 23023788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inner-retinal contributions to the photopic sinusoidal flicker electroretinogram of macaques. Macaque photopic sinusoidal flicker ERG.
    Viswanathan S; Frishman LJ; Robson JG
    Doc Ophthalmol; 2002 Sep; 105(2):223-42. PubMed ID: 12462445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective release of nitric oxide from retinal amacrine and bipolar cells.
    Neal M; Cunningham J; Matthews K
    Invest Ophthalmol Vis Sci; 1998 Apr; 39(5):850-3. PubMed ID: 9538896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normal photoresponses and altered b-wave responses to APB in the mdx(Cv3) mouse isolated retina ERG supports role for dystrophin in synaptic transmission.
    Green DG; Guo H; Pillers DA
    Vis Neurosci; 2004; 21(5):739-47. PubMed ID: 15683561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamate antagonists that block hyperpolarizing bipolar cells increase the release of dopamine from turtle retina.
    Critz SD; Marc RE
    Vis Neurosci; 1992; 9(3-4):271-8. PubMed ID: 1327088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional variations in local contributions to the primate photopic flash ERG: revealed using the slow-sequence mfERG.
    Rangaswamy NV; Hood DC; Frishman LJ
    Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3233-47. PubMed ID: 12824276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Luminance dependence of neural components that underlies the primate photopic electroretinogram.
    Ueno S; Kondo M; Niwa Y; Terasaki H; Miyake Y
    Invest Ophthalmol Vis Sci; 2004 Mar; 45(3):1033-40. PubMed ID: 14985327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A differential effect of APB on ON- and OFF-center ganglion cells in the dark adapted rabbit retina.
    Jin XT; Brunken WJ
    Brain Res; 1996 Feb; 708(1-2):191-6. PubMed ID: 8720878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide release is induced by dopamine during illumination of the carp retina: serial neurochemical control of light adaptation.
    Sekaran S; Cunningham J; Neal MJ; Hartell NA; Djamgoz MB
    Eur J Neurosci; 2005 Apr; 21(8):2199-208. PubMed ID: 15869516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the effects of flickering and steady light on dopamine release and horizontal cell coupling in the mudpuppy retina.
    Dong CJ; McReynolds JS
    J Neurophysiol; 1992 Feb; 67(2):364-72. PubMed ID: 1569464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of 2-amino-4-phosphonobutyric acid (APB) on the ERG and ganglion cell discharge of rabbit retina.
    Massey SC; Redburn DA; Crawford ML
    Vision Res; 1983; 23(12):1607-13. PubMed ID: 6666062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of excitatory amino acids and analogues on [3H]acetylcholine release from amacrine cells of the rabbit retina.
    Cunningham JR; Neal MJ
    J Physiol; 1985 Sep; 366():47-62. PubMed ID: 2865360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of endogenous dopamine release in amphibian retina by L-2-amino-4-phosphonobutyric acid (L-AP4) and trans-2-aminocyclopentane-1,3-dicarboxylate (ACPD).
    Boatright JH; Gordon JR; Iuvone PM
    Brain Res; 1994 Jun; 649(1-2):339-42. PubMed ID: 7525012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of NMDA and non-NMDA excitatory amino acid receptors in the functional organization of primate retinal ganglion cells.
    Cohen ED; Miller RF
    Vis Neurosci; 1994; 11(2):317-32. PubMed ID: 8003456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surround inhibition of mammalian AII amacrine cells is generated in the proximal retina.
    Bloomfield SA; Xin D
    J Physiol; 2000 Mar; 523 Pt 3(Pt 3):771-83. PubMed ID: 10718754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cholinergic amacrine cells of rabbit retina receive on and off input: an analysis of [3H]-ACh release using 2-amino-4-phosphonobutyric acid (APB) and chloride free medium.
    Massey SC; Redburn DA
    Vision Res; 1983; 23(12):1615-20. PubMed ID: 6666063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primate photopic sine-wave flicker ERG: vector modeling analysis of component origins using glutamate analogs.
    Kondo M; Sieving PA
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):305-12. PubMed ID: 11133883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Release of endogenous dopamine from the superfused rabbit retina in vitro: effect of light stimulation.
    Godley BF; Wurtman RJ
    Brain Res; 1988 Jun; 452(1-2):393-5. PubMed ID: 3401747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Centre components of cone-driven retinal ganglion cells: differential sensitivity to 2-amino-4-phosphonobutyric acid.
    Chen EP; Linsenmeier RA
    J Physiol; 1989 Dec; 419():77-93. PubMed ID: 2621650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.