These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 9457174)

  • 1. Toward understanding the assembly and structure of KATP channels.
    Aguilar-Bryan L; Clement JP; Gonzalez G; Kunjilwar K; Babenko A; Bryan J
    Physiol Rev; 1998 Jan; 78(1):227-45. PubMed ID: 9457174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A view of sur/KIR6.X, KATP channels.
    Babenko AP; Aguilar-Bryan L; Bryan J
    Annu Rev Physiol; 1998; 60():667-87. PubMed ID: 9558481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies.
    Seino S
    Annu Rev Physiol; 1999; 61():337-62. PubMed ID: 10099692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Octameric stoichiometry of the KATP channel complex.
    Shyng S; Nichols CG
    J Gen Physiol; 1997 Dec; 110(6):655-64. PubMed ID: 9382894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Putative subunits of the rat mesangial KATP: a type 2B sulfonylurea receptor and an inwardly rectifying K+ channel.
    Szamosfalvi B; Cortes P; Alviani R; Asano K; Riser BL; Zasuwa G; Yee J
    Kidney Int; 2002 May; 61(5):1739-49. PubMed ID: 11967023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proximal C-terminal domain of sulphonylurea receptor 2A interacts with pore-forming Kir6 subunits in KATP channels.
    Rainbow RD; James M; Hudman D; Al Johi M; Singh H; Watson PJ; Ashmole I; Davies NW; Lodwick D; Norman RI
    Biochem J; 2004 Apr; 379(Pt 1):173-81. PubMed ID: 14672537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The N-terminal transmembrane domain (TMD0) and a cytosolic linker (L0) of sulphonylurea receptor define the unique intrinsic gating of KATP channels.
    Fang K; Csanády L; Chan KW
    J Physiol; 2006 Oct; 576(Pt 2):379-89. PubMed ID: 16887879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remodelling of the SUR-Kir6.2 interface of the KATP channel upon ATP binding revealed by the conformational blocker rhodamine 123.
    Hosy E; Dérand R; Revilloud J; Vivaudou M
    J Physiol; 2007 Jul; 582(Pt 1):27-39. PubMed ID: 17510180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular biology of adenosine triphosphate-sensitive potassium channels.
    Aguilar-Bryan L; Bryan J
    Endocr Rev; 1999 Apr; 20(2):101-35. PubMed ID: 10204114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Syntaxin-1A inhibits cardiac KATP channels by its actions on nucleotide binding folds 1 and 2 of sulfonylurea receptor 2A.
    Kang Y; Leung YM; Manning-Fox JE; Xia F; Xie H; Sheu L; Tsushima RG; Light PE; Gaisano HY
    J Biol Chem; 2004 Nov; 279(45):47125-31. PubMed ID: 15339904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of repaglinide on cloned beta cell, cardiac and smooth muscle types of ATP-sensitive potassium channels.
    Dabrowski M; Wahl P; Holmes WE; Ashcroft FM
    Diabetologia; 2001 Jun; 44(6):747-56. PubMed ID: 11440368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different molecular sites of action for the KATP channel inhibitors, PNU-99963 and PNU-37883A.
    Cui Y; Tinker A; Clapp LH
    Br J Pharmacol; 2003 May; 139(1):122-8. PubMed ID: 12746230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for direct physical association between a K+ channel (Kir6.2) and an ATP-binding cassette protein (SUR1) which affects cellular distribution and kinetic behavior of an ATP-sensitive K+ channel.
    Lorenz E; Alekseev AE; Krapivinsky GB; Carrasco AJ; Clapham DE; Terzic A
    Mol Cell Biol; 1998 Mar; 18(3):1652-9. PubMed ID: 9488482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels.
    Inagaki N; Gonoi T; Clement JP; Wang CZ; Aguilar-Bryan L; Bryan J; Seino S
    Neuron; 1996 May; 16(5):1011-7. PubMed ID: 8630239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random assembly of SUR subunits in K(ATP) channel complexes.
    Cheng WW; Tong A; Flagg TP; Nichols CG
    Channels (Austin); 2008; 2(1):34-8. PubMed ID: 18690055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure and function of the ATP-sensitive K+ channel in insulin-secreting pancreatic beta-cells.
    Miki T; Nagashima K; Seino S
    J Mol Endocrinol; 1999 Apr; 22(2):113-23. PubMed ID: 10194514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MgATP activates the beta cell KATP channel by interaction with its SUR1 subunit.
    Gribble FM; Tucker SJ; Haug T; Ashcroft FM
    Proc Natl Acad Sci U S A; 1998 Jun; 95(12):7185-90. PubMed ID: 9618560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SUR, ABC proteins targeted by KATP channel openers.
    Moreau C; Prost AL; Dérand R; Vivaudou M
    J Mol Cell Cardiol; 2005 Jun; 38(6):951-63. PubMed ID: 15910880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-terminal transmembrane domain of the SUR controls trafficking and gating of Kir6 channel subunits.
    Chan KW; Zhang H; Logothetis DE
    EMBO J; 2003 Aug; 22(15):3833-43. PubMed ID: 12881418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Activation of ATP-sensitive K+ channels by ADP and K+ channel openers: homology model of sulfonylurea receptor carboxyl-termini].
    Fujita A; Matsuoka T; Matsushita K; Kurachi Y
    Nihon Yakurigaku Zasshi; 2001 Sep; 118(3):177-86. PubMed ID: 11577458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.