These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9457556)

  • 1. Compressive creep characteristics of extruded ultrahigh-molecular-weight polyethylene.
    Lee KY; Pienkowski D
    J Biomed Mater Res; 1998 Feb; 39(2):261-5. PubMed ID: 9457556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-deformation shape-recovery behavior of vitamin E-diffused, radiation crosslinked polyethylene acetabular components.
    Takahashi Y; Tateiwa T; Shishido T; Masaoka T; Kubo K; Yamamoto K
    J Mech Behav Biomed Mater; 2016 Oct; 63():399-406. PubMed ID: 27454526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of crosslinking UHMWPE on its tensile and compressive creep performance.
    Lewis G; Carroll M
    Biomed Mater Eng; 2001; 11(3):167-83. PubMed ID: 11564901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A nonlinear viscoelastic finite element model of polyethylene.
    Chen PC; Colwell CW; D'Lima DD
    Mol Cell Biomech; 2011 Jun; 8(2):135-48. PubMed ID: 21608414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An activated energy approach for accelerated testing of the deformation of UHMWPE in artificial joints.
    Galetz MC; Glatzel U
    J Mech Behav Biomed Mater; 2010 May; 3(4):331-8. PubMed ID: 20346901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of the manufacturing process on creep and wear properties of UHMWPE (ultra-high molecular weight polyethylene)].
    Huber J; Walter A; Plitz W; Refior HJ
    Biomed Tech (Berl); 1995 Apr; 40(4):88-92. PubMed ID: 7772710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size and thickness effect on creep behavior in conventional and vitamin E-diffused highly crosslinked polyethylene for total hip arthroplasty.
    Takahashi Y; Tateiwa T; Shishido T; Masaoka T; Kubo K; Yamamoto K
    J Mech Behav Biomed Mater; 2016 Sep; 62():399-406. PubMed ID: 27261923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of the wear and debris generation of GUR 1120 (compression moulded) and GUR 4150HP (ram extruded) ultra high molecular weight polyethylene.
    Endo MM; Barbour PS; Barton DC; Wroblewski BM; Fisher J; Tipper JL; Ingham E; Stone MH
    Biomed Mater Eng; 1999; 9(2):113-24. PubMed ID: 10524294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of strain rate and low-gamma irradiation on the compressive properties of UHMWPE.
    Kobayashi K; Kakinoki T; Sakamoto M; Tanabe Y
    Biomed Mater Eng; 2007; 17(2):87-95. PubMed ID: 17377217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The yielding, plastic flow, and fracture behavior of ultra-high molecular weight polyethylene used in total joint replacements.
    Kurtz SM; Pruitt L; Jewett CW; Crawford RP; Crane DJ; Edidin AA
    Biomaterials; 1998 Nov; 19(21):1989-2003. PubMed ID: 9863533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-destructively differentiating the roles of creep, wear and oxidation in long-term in vivo exposed polyethylene cups.
    Pezzotti G; Takahashi Y; Takamatsu S; Puppulin L; Nishii T; Miki H; Sugano N
    J Biomater Sci Polym Ed; 2011; 22(16):2165-84. PubMed ID: 21067657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of creep behavior of ultra-high-molecular-weight polyethylene systems.
    Deng M; Latour RA; Ogale AA; Shalaby SW
    J Biomed Mater Res; 1998 May; 40(2):214-23. PubMed ID: 9549616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards an accurate understanding of UHMWPE visco-dynamic behaviour for numerical modelling of implants.
    Quinci F; Dressler M; Strickland AM; Limbert G
    J Mech Behav Biomed Mater; 2014 Apr; 32():62-75. PubMed ID: 24434602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the in vivo wear rates of 43 surgically retrieved direct compression molded and ram extruded ultra high molecular weight polyethylene acetabular components.
    Rentfrow ED; James SP; Beauregard GP; Lee KR; McLaughlin JR
    Biomed Sci Instrum; 1996; 32():135-41. PubMed ID: 8672661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of irradiation dose on mechanical properties and wear resistance of molded and extruded ultra high molecular weight polyethylene.
    Xiong L; Xiong D
    J Mech Behav Biomed Mater; 2012 May; 9():73-82. PubMed ID: 22498285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain-induced crystallization and orientation of vitamin E-blended ultrahigh molecular weight polyethylene.
    Okubo Y; Teramura S; Niwa Y; Ibaraki K; Murata K; Hyon SH; Pezzotti G; Tomita N
    Biomed Mater Eng; 2009; 19(6):431-9. PubMed ID: 20231796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of temporal wear patterns of porous-coated acetabular components: distinguishing between true wear and so-called bedding-in.
    Sychterz CJ; Engh CA; Yang A; Engh CA
    J Bone Joint Surg Am; 1999 Jun; 81(6):821-30. PubMed ID: 10391547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface micromechanics of ultrahigh molecular weight polyethylene: Microindentation testing, crosslinking, and material behavior.
    Gilbert JL; Cumber J; Butterfield A
    J Biomed Mater Res; 2002 Aug; 61(2):270-81. PubMed ID: 12007208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive model for tensile true stress-strain behavior of chemically and mechanically degraded ultrahigh molecular weight polyethylene.
    Kurtz SM; Rimnac CM; Bartel DL
    J Biomed Mater Res; 1998; 43(3):241-8. PubMed ID: 9730061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element simulation of early creep and wear in total hip arthroplasty.
    Bevill SL; Bevill GR; Penmetsa JR; Petrella AJ; Rullkoetter PJ
    J Biomech; 2005 Dec; 38(12):2365-74. PubMed ID: 16214484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.