BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 9457758)

  • 1. Effect of Asp-97-->Glu substitution on the pH dependence of catalysis by inorganic pyrophosphatase of Escherichia coli.
    Fabrichniy IP; Lahti R; Baykov AA
    Biochemistry (Mosc); 1997 Sep; 62(9):946-50. PubMed ID: 9457758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of E20D substitution in the active site of Escherichia coli inorganic pyrophosphatase on its quaternary structure and catalytic properties.
    Volk SE; Dudarenkov VY; Käpylä J; Kasho VN; Voloshina OA; Salminen T; Goldman A; Lahti R; Baykov AA; Cooperman BS
    Biochemistry; 1996 Apr; 35(15):4662-9. PubMed ID: 8664255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary conservation of enzymatic catalysis: quantitative comparison of the effects of mutation of aligned residues in Saccharomyces cerevisiae and Escherichia coli inorganic pyrophosphatases on enzymatic activity.
    Pohjanjoki P; Lahti R; Goldman A; Cooperman BS
    Biochemistry; 1998 Feb; 37(7):1754-61. PubMed ID: 9485300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a new magnesium binding site in the subunit contact region of Escherichia coli inorganic pyrophosphatase.
    Parfenyev AN; Salminen A; Baykov AA; Lahti R
    Biochemistry (Mosc); 2000 Mar; 65(3):388-92. PubMed ID: 10739482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of the enzyme--substrate complex of the mutant Asp-67Asn inorganic pyrophosphatase from Escherichia coli by fluoride ions.
    Avaeva SM; Velichko TI; Vorobyeva NN; Kurilova SA; Nazarova TI; Sklyankina VA
    Biochemistry (Mosc); 1999 Feb; 64(2):169-74. PubMed ID: 10187907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional consequences of substitutions at the tyrosine 55-lysine 104 hydrogen bond in Escherichia coli inorganic pyrophosphatase.
    Fabrichniy IP; Kasho VN; Hyytiä T; Salminen T; Halonen P; Dudarenkov VY; Heikinheimo P; Chernyak VY; Goldman A; Lahti R; Cooperman BS; Baykov AA
    Biochemistry; 1997 Jun; 36(25):7746-53. PubMed ID: 9201916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of Ca2+-induced inhibition of Escherichia coli inorganic pyrophosphatase.
    Avaeva SM; Vorobyeva NN; Kurilova SA; Nazarova TI; Polyakov KM; Rodina EV; Samygina VR
    Biochemistry (Mosc); 2000 Mar; 65(3):373-87. PubMed ID: 10739481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trimeric inorganic pyrophosphatase of Escherichia coli obtained by directed mutagenesis.
    Velichko IS; Mikalahti K; Kasho VN; Dudarenkov VY; Hyytiä T; Goldman A; Cooperman BS; Lahti R; Baykov AA
    Biochemistry; 1998 Jan; 37(2):734-40. PubMed ID: 9425097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of the pH-dependence of thermolysin activity as examined by site-directed mutagenesis of Asn112 located at the active site of thermolysin.
    Kusano M; Yasukawa K; Hashida Y; Inouye K
    J Biochem; 2006 Jun; 139(6):1017-23. PubMed ID: 16788052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid mutant form of Escherichia coli inorganic pyrophosphatase.
    Velichko IS; Baykov AA
    Biochemistry (Mosc); 1997 Mar; 62(3):233-6. PubMed ID: 9275296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Comparative effects of fluoride on three enzymes, hydrolyzing pyrophosphate - acid and alkaline phosphatases and inorganic pyrophosphatase].
    Kasho VN; Baĭkov AA; Avaeva SM
    Biokhimiia; 1982 Aug; 47(8):1289-92. PubMed ID: 6127120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional structures of mutant forms of E. coli inorganic pyrophosphatase with Asp-->Asn single substitution in positions 42, 65, 70, and 97.
    Avaeva SM; Rodina EV; Vorobyeva NN; Kurilova SA; Nazarova TI; Sklyankina VA; Oganessyan VY; Samygina VR; Harutyunyan EH
    Biochemistry (Mosc); 1998 Jun; 63(6):671-84. PubMed ID: 9668207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase.
    Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP
    J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Escherichia coli inorganic pyrophosphatase: site-directed mutagenesis of the metal binding sites.
    Avaeva S; Ignatov P; Kurilova S; Nazarova T; Rodina E; Vorobyeva N; Oganessyan V; Harutyunyan E
    FEBS Lett; 1996 Dec; 399(1-2):99-102. PubMed ID: 8980129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Functionally important lysine residues in inorganic pyrophosphatase from E. coli. I. Interaction of inorganic pyrophosphatase with pyridoxal-5'-phosphate].
    Komissarov AA; Shpanchenko OV; Skliankina VA; Avaeva SM
    Bioorg Khim; 1987 May; 13(5):592-8. PubMed ID: 3040009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of the essential Asp-48 and highly conserved His-43 elucidated by the pH dependence of the pseudouridine synthase TruB.
    Hamilton CS; Spedaliere CJ; Ginter JM; Johnston MV; Mueller EG
    Arch Biochem Biophys; 2005 Jan; 433(1):322-34. PubMed ID: 15581587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanism of the Thermus thermophilus ADP-ribose pyrophosphatase from mutational and kinetic studies.
    Ooga T; Yoshiba S; Nakagawa N; Kuramitsu S; Masui R
    Biochemistry; 2005 Jul; 44(26):9320-9. PubMed ID: 15981998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The R78K and D117E active-site variants of Saccharomyces cerevisiae soluble inorganic pyrophosphatase: structural studies and mechanistic implications.
    Tuominen V; Heikinheimo P; Kajander T; Torkkel T; Hyytiä T; Käpylä J; Lahti R; Cooperman BS; Goldman A
    J Mol Biol; 1998 Dec; 284(5):1565-80. PubMed ID: 9878371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate-459 is important for Escherichia coli branching enzyme activity.
    Binderup K; Preiss J
    Biochemistry; 1998 Jun; 37(25):9033-7. PubMed ID: 9636047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Functionally important lysine residues in inorganic pyrophosphatase from E. coli. II. Isolation and characteristics of modified tryptic peptide and analysis of the functional role of lysine residues controlling enzyme activity].
    Komissarov AA; Skliankina VA; Avaeva SM
    Bioorg Khim; 1987 May; 13(5):599-605. PubMed ID: 3040010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.