BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 9457758)

  • 21. Effect of D42N substitution in Escherichia coli inorganic pyrophosphatase on catalytic activity and Mg2+ binding.
    Avaeva SM; Rodina EV; Kurilova SA; Nazarova TI; Vorobyeva NN
    FEBS Lett; 1996 Aug; 392(2):91-4. PubMed ID: 8772181
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dispensability of glutamic acid 48 and aspartic acid 134 for Mn2+-dependent activity of Escherichia coli ribonuclease HI.
    Tsunaka Y; Haruki M; Morikawa M; Oobatake M; Kanaya S
    Biochemistry; 2003 Mar; 42(11):3366-74. PubMed ID: 12641469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of Asp42 in Escherichia coli inorganic pyrophosphatase functioning.
    Rodina EV; Vainonen YP; Vorobyeva NN; Kurilova SA; Nazarova TI; Avaeva SM
    Eur J Biochem; 2001 Jul; 268(13):3851-7. PubMed ID: 11432753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalysis by Escherichia coli inorganic pyrophosphatase: pH and Mg2+ dependence.
    Baykov AA; Hyytia T; Volk SE; Kasho VN; Vener AV; Goldman A; Lahti R; Cooperman BS
    Biochemistry; 1996 Apr; 35(15):4655-61. PubMed ID: 8664254
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target.
    Harris JM; McIntosh EM; Muscat GE
    J Mol Biol; 1999 Apr; 288(2):275-87. PubMed ID: 10329142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Membrane-bound pyrophosphatase of Thermotoga maritima requires sodium for activity.
    Belogurov GA; Malinen AM; Turkina MV; Jalonen U; Rytkönen K; Baykov AA; Lahti R
    Biochemistry; 2005 Feb; 44(6):2088-96. PubMed ID: 15697234
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional significance of Glu-77 and Tyr-137 within the active site of isoaspartyl dipeptidase.
    Martí-Arbona R; Thoden JB; Holden HM; Raushel FM
    Bioorg Chem; 2005 Dec; 33(6):448-58. PubMed ID: 16289685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of D97E substitution on the kinetic and thermodynamic properties of Escherichia coli inorganic pyrophosphatase.
    Käpylä J; Hyytiä T; Lahti R; Goldman A; Baykov AA; Cooperman BS
    Biochemistry; 1995 Jan; 34(3):792-800. PubMed ID: 7827038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Phosphorylation as a method of regulating inorganic pyrophosphatase activity in E. coli. II. Identification of the types of chemical bonds between phosphate and the enzyme].
    Vener AV; Ichetovkina LE; Komissarov AA; Nazarova TI; Avaeva SM
    Bioorg Khim; 1986 Feb; 12(2):200-5. PubMed ID: 3006700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing pH-dependent functional elements in proteins: modification of carboxylic acid pairs in Trichoderma reesei cellobiohydrolase Cel6A.
    Wohlfahrt G; Pellikka T; Boer H; Teeri TT; Koivula A
    Biochemistry; 2003 Sep; 42(34):10095-103. PubMed ID: 12939137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Active site interactions in oligomeric structures of inorganic pyrophosphatases.
    Avaeva SM
    Biochemistry (Mosc); 2000 Mar; 65(3):361-72. PubMed ID: 10739480
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reversible inhibition of Escherichia coli inorganic pyrophosphatase by fluoride: trapped catalytic intermediates in cryo-crystallographic studies.
    Samygina VR; Moiseev VM; Rodina EV; Vorobyeva NN; Popov AN; Kurilova SA; Nazarova TI; Avaeva SM; Bartunik HD
    J Mol Biol; 2007 Mar; 366(4):1305-17. PubMed ID: 17196979
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cold lability of the mutant forms of Escherichia coli inorganic pyrophosphatase.
    Velichko IS; Volk SE; Dudarenkov VYu ; Magretova NN; Chernyak VYa ; Goldman A; Cooperman BS; Lahti R; Baykov AA; Velichko IV
    FEBS Lett; 1995 Feb; 359(1):20-2. PubMed ID: 7851523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Functionally important residues of glutamic acid in E. coli pyrophosphatase. I. Chemical modification and localization in the primary structure].
    Raznikov AV; Egorov TsA; Mirgorodskaia OV; Skliankina VA; Avaeva SM
    Biokhimiia; 1992 Dec; 57(12):1902-12. PubMed ID: 1363464
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A site-directed mutagenesis study on Escherichia coli inorganic pyrophosphatase. Glutamic acid-98 and lysine-104 are important for structural integrity, whereas aspartic acids-97 and -102 are essential for catalytic activity.
    Lahti R; Pohjanoksa K; Pitkäranta T; Heikinheimo P; Salminen T; Meyer P; Heinonen J
    Biochemistry; 1990 Jun; 29(24):5761-6. PubMed ID: 1974462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glutamic acid 472 and lysine 480 of the sodium pump alpha 1 subunit are essential for activity. Their conservation in pyrophosphatases suggests their involvement in recognition of ATP phosphates.
    Scheiner-Bobis G; Schreiber S
    Biochemistry; 1999 Jul; 38(29):9198-208. PubMed ID: 10413494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydration change during the aging of phosphorylated human butyrylcholinesterase: importance of residues aspartate-70 and glutamate-197 in the water network as probed by hydrostatic and osmotic pressures.
    Masson P; Cléry C; Guerra P; Redslob A; Albaret C; Fortier PL
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):361-9. PubMed ID: 10510301
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38.
    Johnson AR; Chen YW; Dekker EE
    Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of excision of a methylene group from Glu-376 (Glu376-->Asp mutation) in the medium chain acyl-CoA dehydrogenase-catalyzed reaction.
    Peterson KL; Galitz DS; Srivastava DK
    Biochemistry; 1998 Feb; 37(6):1697-705. PubMed ID: 9484241
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of holo inorganic pyrophosphatase from Escherichia coli at 1.9 A resolution. Mechanism of hydrolysis.
    Harutyunyan EH; Oganessyan VY; Oganessyan NN; Avaeva SM; Nazarova TI; Vorobyeva NN; Kurilova SA; Huber R; Mather T
    Biochemistry; 1997 Jun; 36(25):7754-60. PubMed ID: 9201917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.