These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9457761)

  • 1. Reduction of methemoglobin and ferricytochrome c by glycosylated amino acids and albumin.
    Stepuro II; Chaikovskaya NA; Vodoevich VP; Vinogradov VV
    Biochemistry (Mosc); 1997 Sep; 62(9):967-72. PubMed ID: 9457761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide production from nonenzymatically glycated protein.
    Sakurai T; Tsuchiya S
    FEBS Lett; 1988 Aug; 236(2):406-10. PubMed ID: 2842191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of electron transfer to coordinated dioxygen of oxyhemoglobins to yield peroxide and methemoglobin. Protein control of electron donation by aquopentacyanoferrate(II).
    Kawanishi S; Caughey WS
    J Biol Chem; 1985 Apr; 260(8):4622-31. PubMed ID: 3988729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonenzymatic glycosylation of human serum albumin alters its conformation and function.
    Shaklai N; Garlick RL; Bunn HF
    J Biol Chem; 1984 Mar; 259(6):3812-7. PubMed ID: 6706980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Adducts of glycosylated serum albumin with amino acids].
    Stepuro II; Piletskaia TP; Iaroshevich NA; Naumov AV
    Ukr Biokhim Zh (1978); 1986; 58(4):9-14. PubMed ID: 3739039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction of hydrogen peroxide with ferrylhemoglobin: superoxide production and heme degradation.
    Nagababu E; Rifkind JM
    Biochemistry; 2000 Oct; 39(40):12503-11. PubMed ID: 11015232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of glycated amino acid elimination reaction for an improved enzymatic glycated albumin measurement method.
    Kouzuma T; Uemastu Y; Usami T; Imamura S
    Clin Chim Acta; 2004 Aug; 346(2):135-43. PubMed ID: 15256314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nitric oxide/superoxide assay. Insights into the biological chemistry of the NO/O-2. interaction.
    Kelm M; Dahmann R; Wink D; Feelisch M
    J Biol Chem; 1997 Apr; 272(15):9922-32. PubMed ID: 9092531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonenzymatic glycosylation of albumin in vivo. Identification of multiple glycosylated sites.
    Iberg N; Flückiger R
    J Biol Chem; 1986 Oct; 261(29):13542-5. PubMed ID: 3759977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The generation of superoxide anions in glycation reactions with sugars, osones, and 3-deoxyosones.
    Ortwerth BJ; James H; Simpson G; Linetsky M
    Biochem Biophys Res Commun; 1998 Apr; 245(1):161-5. PubMed ID: 9535801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyl radical mediates N epsilon-(carboxymethyl)lysine formation from Amadori product.
    Nagai R; Ikeda K; Higashi T; Sano H; Jinnouchi Y; Araki T; Horiuchi S
    Biochem Biophys Res Commun; 1997 May; 234(1):167-72. PubMed ID: 9168983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2'-Deoxyribose Mediated Glycation Leads to Alterations in BSA Structure Via Generation of Carbonyl Species.
    Rafi Z; Alouffi S; Khan MS; Ahmad S
    Curr Protein Pept Sci; 2020; 21(9):924-935. PubMed ID: 32053073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The formation of the 7-carboxyheptyl radical from 13-hydroperoxy-9,11-octadecadienoic acid catalyzed by hemoglobin and myoglobin under anaerobic conditions.
    Iwahashi H; Kumamoto K; Hirai T
    J Biochem; 2003 May; 133(5):679-85. PubMed ID: 12801921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemiluminescence from activated heme compounds detected in the reaction of various xenobiotics with oxyhemoglobin: comparison with several heme/hydrogen peroxide systems.
    Nohl H; Stolze K
    Free Radic Biol Med; 1993 Sep; 15(3):257-63. PubMed ID: 8406125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactivities of D-glucose and D-fructose during glycation of bovine serum albumin.
    Yeboah FK; Alli I; Yaylayan VA
    J Agric Food Chem; 1999 Aug; 47(8):3164-72. PubMed ID: 10552625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The generation of O2-by the interaction of the hemolytic agent, phenylhydrazine, with human hemoglobin.
    Goldberg B; Stern A
    J Biol Chem; 1975 Mar; 250(6):2401-3. PubMed ID: 163828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glomerular handling of native albumin in the presence of circulating modified albumins by the normal rat kidney.
    Londono I; Bendayan M
    Am J Physiol Renal Physiol; 2005 Dec; 289(6):F1201-9. PubMed ID: 16014576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of colchicine binding with normal and glycated albumin: In vitro and molecular docking analysis.
    Rabbani N; Tabrez S; Islam BU; Rehman MT; Alsenaidy AM; AlAjmi MF; Khan RA; Alsenaidy MA; Khan MS
    J Biomol Struct Dyn; 2018 Oct; 36(13):3453-3462. PubMed ID: 28990867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The principal site of nonenzymatic glycosylation of human serum albumin in vivo.
    Garlick RL; Mazer JS
    J Biol Chem; 1983 May; 258(10):6142-6. PubMed ID: 6853480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amadori product and age formation during nonenzymatic glycosylation of bovine serum albumin in vitro.
    Sharma SD; Pandey BN; Mishra KP; Sivakami S
    J Biochem Mol Biol Biophys; 2002 Aug; 6(4):233-42. PubMed ID: 12186738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.