These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 9458043)

  • 61. Prostaglandin F2alpha stimulates the Raf/MEK1/mitogen-activated protein kinase signaling cascade in bovine luteal cells.
    Chen DB; Westfall SD; Fong HW; Roberson MS; Davis JS
    Endocrinology; 1998 Sep; 139(9):3876-85. PubMed ID: 9724043
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Regulation of hairy-cell survival through constitutive activation of mitogen-activated protein kinase pathways.
    Kamiguti AS; Harris RJ; Slupsky JR; Baker PK; Cawley JC; Zuzel M
    Oncogene; 2003 Apr; 22(15):2272-84. PubMed ID: 12700663
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Okadaic-acid-induced inhibition of protein phosphatase 2A produces activation of mitogen-activated protein kinases ERK1/2, MEK1/2, and p70 S6, similar to that in Alzheimer's disease.
    Pei JJ; Gong CX; An WL; Winblad B; Cowburn RF; Grundke-Iqbal I; Iqbal K
    Am J Pathol; 2003 Sep; 163(3):845-58. PubMed ID: 12937126
    [TBL] [Abstract][Full Text] [Related]  

  • 64. In search of an essential step during mitotic Golgi disassembly and inheritance.
    Puthenveedu MA; Linstedt AD
    Exp Cell Res; 2001 Nov; 271(1):22-7. PubMed ID: 11697878
    [No Abstract]   [Full Text] [Related]  

  • 65. Dependence of both spontaneous and antibody-dependent, granule exocytosis-mediated NK cell cytotoxicity on extracellular signal-regulated kinases.
    Trotta R; Puorro KA; Paroli M; Azzoni L; Abebe B; Eisenlohr LC; Perussia B
    J Immunol; 1998 Dec; 161(12):6648-56. PubMed ID: 9862693
    [TBL] [Abstract][Full Text] [Related]  

  • 66. ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion.
    Jones NC; Fedorov YV; Rosenthal RS; Olwin BB
    J Cell Physiol; 2001 Jan; 186(1):104-15. PubMed ID: 11147804
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Plk3 interacts with and specifically phosphorylates VRK1 in Ser342, a downstream target in a pathway that induces Golgi fragmentation.
    López-Sánchez I; Sanz-García M; Lazo PA
    Mol Cell Biol; 2009 Mar; 29(5):1189-201. PubMed ID: 19103756
    [TBL] [Abstract][Full Text] [Related]  

  • 68. PKD controls mitotic Golgi complex fragmentation through a Raf-MEK1 pathway.
    Kienzle C; Eisler SA; Villeneuve J; Brummer T; Olayioye MA; Hausser A
    Mol Biol Cell; 2013 Feb; 24(3):222-33. PubMed ID: 23242995
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells.
    Sütterlin C; Hsu P; Mallabiabarrena A; Malhotra V
    Cell; 2002 May; 109(3):359-69. PubMed ID: 12015985
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Specific phosphorylation and activation of ERK1c by MEK1b: a unique route in the ERK cascade.
    Shaul YD; Gibor G; Plotnikov A; Seger R
    Genes Dev; 2009 Aug; 23(15):1779-90. PubMed ID: 19651986
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Golgi partitioning controls mitotic entry through Aurora-A kinase.
    Persico A; Cervigni RI; Barretta ML; Corda D; Colanzi A
    Mol Biol Cell; 2010 Nov; 21(21):3708-21. PubMed ID: 20844084
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mitogen-activated protein kinase kinase activity is required for the G(2)/M transition of the cell cycle in mammalian fibroblasts.
    Wright JH; Munar E; Jameson DR; Andreassen PR; Margolis RL; Seger R; Krebs EG
    Proc Natl Acad Sci U S A; 1999 Sep; 96(20):11335-40. PubMed ID: 10500177
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Signaling at the Golgi during mitosis.
    Colanzi A; Sütterlin C
    Methods Cell Biol; 2013; 118():383-400. PubMed ID: 24295319
    [TBL] [Abstract][Full Text] [Related]  

  • 74. From Vanadis to Atropos: vanadium compounds as pharmacological tools in cell death signalling.
    Morinville A; Maysinger D; Shaver A
    Trends Pharmacol Sci; 1998 Nov; 19(11):452-60. PubMed ID: 9850609
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Reconstitution of the Golgi reassembly process in semi-intact MDCK cells.
    Kano F; Nagayama K; Murata M
    Biophys Chem; 2000 May; 84(3):261-8. PubMed ID: 10852313
    [TBL] [Abstract][Full Text] [Related]  

  • 76. MAP kinases ERK1 and ERK2: pleiotropic enzymes in a ubiquitous signaling network.
    Robbins DJ; Zhen E; Cheng M; Xu S; Ebert D; Cobb MH
    Adv Cancer Res; 1994; 63():93-116. PubMed ID: 8036991
    [No Abstract]   [Full Text] [Related]  

  • 77. Cell signal transduction through the mitogen-activated protein kinase pathway.
    Schnaper HW
    Pediatr Nephrol; 1998 Nov; 12(9):790-5. PubMed ID: 9874331
    [No Abstract]   [Full Text] [Related]  

  • 78. Kinases regulating Golgi apparatus structure and function.
    Preisinger C; Barr FA
    Biochem Soc Symp; 2005; (72):15-30. PubMed ID: 15649126
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Protein phosphatase 2A activity associated with Golgi membranes during the G2/M phase may regulate phosphorylation of ERK2.
    Hancock CN; Dangi S; Shapiro P
    J Biol Chem; 2005 Mar; 280(12):11590-8. PubMed ID: 15654082
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Alternative Splicing of MAPKs in the Regulation of Signaling Specificity.
    Maik-Rachline G; Wortzel I; Seger R
    Cells; 2021 Dec; 10(12):. PubMed ID: 34943973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.