These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9458060)

  • 1. Timing of EEG-based cursor control.
    Wolpaw JR; Flotzinger D; Pfurtscheller G; McFarland DJ
    J Clin Neurophysiol; 1997 Nov; 14(6):529-38. PubMed ID: 9458060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG-based communication: evaluation of alternative signal prediction methods.
    Ramoser H; Wolpaw JR; Pfurtscheller G
    Biomed Tech (Berl); 1997 Sep; 42(9):226-33. PubMed ID: 9342887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroencephalographic(EEG)-based communication: EEG control versus system performance in humans.
    Sheikh H; McFarland DJ; Sarnacki WA; Wolpaw JR
    Neurosci Lett; 2003 Jul; 345(2):89-92. PubMed ID: 12821178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
    Fabiani GE; McFarland DJ; Wolpaw JR; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):331-8. PubMed ID: 15473195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG-based communication and control: speed-accuracy relationships.
    McFarland DJ; Wolpaw JR
    Appl Psychophysiol Biofeedback; 2003 Sep; 28(3):217-31. PubMed ID: 12964453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEG-based brain computer interface (BCI). Search for optimal electrode positions and frequency components.
    Pfurtscheller G; Flotzinger D; Pregenzer M; Wolpaw JR; McFarland D
    Med Prog Technol; 1995-1996; 21(3):111-21. PubMed ID: 8776708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Answering questions with an electroencephalogram-based brain-computer interface.
    Miner LA; McFarland DJ; Wolpaw JR
    Arch Phys Med Rehabil; 1998 Sep; 79(9):1029-33. PubMed ID: 9749678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG-based communication: analysis of concurrent EMG activity.
    Vaughan TM; Miner LA; McFarland DJ; Wolpaw JR
    Electroencephalogr Clin Neurophysiol; 1998 Dec; 107(6):428-33. PubMed ID: 9922089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensorimotor rhythm-based brain-computer interface (BCI): feature selection by regression improves performance.
    McFarland DJ; Wolpaw JR
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):372-9. PubMed ID: 16200760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG-based communication: improved accuracy by response verification.
    Wolpaw JR; Ramoser H; McFarland DJ; Pfurtscheller G
    IEEE Trans Rehabil Eng; 1998 Sep; 6(3):326-33. PubMed ID: 9749910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An EEG-based brain-computer interface for cursor control.
    Wolpaw JR; McFarland DJ; Neat GW; Forneris CA
    Electroencephalogr Clin Neurophysiol; 1991 Mar; 78(3):252-9. PubMed ID: 1707798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current trends in Graz Brain-Computer Interface (BCI) research.
    Pfurtscheller G; Neuper C; Guger C; Harkam W; Ramoser H; Schlögl A; Obermaier B; Pregenzer M
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):216-9. PubMed ID: 10896192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain-computer interface research at the Wadsworth Center.
    Wolpaw JR; McFarland DJ; Vaughan TM
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):222-6. PubMed ID: 10896194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A binary method for simple and accurate two-dimensional cursor control from EEG with minimal subject training.
    Kayagil TA; Bai O; Henriquez CS; Lin P; Furlani SJ; Vorbach S; Hallett M
    J Neuroeng Rehabil; 2009 May; 6():14. PubMed ID: 19419576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel man-machine training in development of EEG-based cursor control.
    Kostov A; Polak M
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):203-5. PubMed ID: 10896187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain-computer interface (BCI) operation: optimizing information transfer rates.
    McFarland DJ; Sarnacki WA; Wolpaw JR
    Biol Psychol; 2003 Jul; 63(3):237-51. PubMed ID: 12853169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target selection with hybrid feature for BCI-based 2-D cursor control.
    Long J; Li Y; Yu T; Gu Z
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):132-40. PubMed ID: 21926016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical application of an EEG-based brain-computer interface: a case study in a patient with severe motor impairment.
    Neuper C; Müller GR; Kübler A; Birbaumer N; Pfurtscheller G
    Clin Neurophysiol; 2003 Mar; 114(3):399-409. PubMed ID: 12705420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.