These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 9458831)

  • 1. Effects of insulin-like growth factor I on the renal juxtamedullary microvasculature.
    Tönshoff B; Kaskel FJ; Moore LC
    Am J Physiol; 1998 Jan; 274(1):F120-8. PubMed ID: 9458831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal nitric oxide synthase-dependent afferent arteriolar function in angiotensin II-induced hypertension.
    Ichihara A; Imig JD; Navar LG
    Hypertension; 1999 Jan; 33(1 Pt 2):462-6. PubMed ID: 9931148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actions of epoxygenase metabolites on the preglomerular vasculature.
    Imig JD; Navar LG; Roman RJ; Reddy KK; Falck JR
    J Am Soc Nephrol; 1996 Nov; 7(11):2364-70. PubMed ID: 8959626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perfusate composition influences nitric oxide homeostasis in rat juxtamedullary afferent arterioles.
    Pittner J; Wolgast M; Persson AE
    Acta Physiol Scand; 2003 Sep; 179(1):85-91. PubMed ID: 12940942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon monoxide induces vasodilation and nitric oxide release but suppresses endothelial NOS.
    Thorup C; Jones CL; Gross SS; Moore LC; Goligorsky MS
    Am J Physiol; 1999 Dec; 277(6):F882-9. PubMed ID: 10600935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epoxygenase metabolites contribute to nitric oxide-independent afferent arteriolar vasodilation in response to bradykinin.
    Imig JD; Falck JR; Wei S; Capdevila JH
    J Vasc Res; 2001; 38(3):247-55. PubMed ID: 11399897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of contribution of nitric oxide synthase to cholinergic vasodilation in murine renal afferent arterioles.
    Park S; Bivona BJ; Harrison-Bernard LM
    Am J Physiol Renal Physiol; 2018 Jun; 314(6):F1197-F1204. PubMed ID: 29412691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tonic protein kinase C-mediated vasoconstriction is unmasked when nitric oxide synthase is inhibited in cerebral microvessels.
    Fergus A; Jin Y; Thai QA; Kassell NF; Lee KS
    Neuroscience; 1996 Oct; 74(3):927-34. PubMed ID: 8884787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dilation of rat diaphragmatic arterioles by flow and hypoxia: roles of nitric oxide and prostaglandins.
    Ward ME
    J Appl Physiol (1985); 1999 May; 86(5):1644-50. PubMed ID: 10233130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide synthesis inhibitor prevents vasodilation by insulin-like growth factor I.
    Haylor J; Singh I; el Nahas AM
    Kidney Int; 1991 Feb; 39(2):333-5. PubMed ID: 2002647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Afferent arteriolar vasodilation to the sulfonimide analog of 11, 12-epoxyeicosatrienoic acid involves protein kinase A.
    Imig JD; Inscho EW; Deichmann PC; Reddy KM; Falck JR
    Hypertension; 1999 Jan; 33(1 Pt 2):408-13. PubMed ID: 9931138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of epithelial sodium channel blockade on the myogenic response of rat juxtamedullary afferent arterioles.
    Guan Z; Pollock JS; Cook AK; Hobbs JL; Inscho EW
    Hypertension; 2009 Nov; 54(5):1062-9. PubMed ID: 19720952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diabetes-induced microvascular dysfunction in the hydronephrotic kidney: role of nitric oxide.
    De Vriese AS; Stoenoiu MS; Elger M; Devuyst O; Vanholder R; Kriz W; Lameire NH
    Kidney Int; 2001 Jul; 60(1):202-10. PubMed ID: 11422752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium mobilization contributes to pressure-mediated afferent arteriolar vasoconstriction.
    Inscho EW; Cook AK; Mui V; Imig JD
    Hypertension; 1998 Jan; 31(1 Pt 2):421-8. PubMed ID: 9453339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic L-NAME hypertension in rats and autoregulation of juxtamedullary preglomerular vessels.
    Bouriquet N; Casellas D
    Am J Physiol; 1995 Aug; 269(2 Pt 2):F190-7. PubMed ID: 7653592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ATP on pre- and postglomerular juxtamedullary microvasculature.
    Inscho EW; Ohishi K; Navar LG
    Am J Physiol; 1992 Nov; 263(5 Pt 2):F886-93. PubMed ID: 1443177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of coronary vasodilation to insulin and insulin-like growth factor I is dependent on vessel size.
    Oltman CL; Kane NL; Gutterman DD; Bar RS; Dellsperger KC
    Am J Physiol Endocrinol Metab; 2000 Jul; 279(1):E176-81. PubMed ID: 10893337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endotoxin-induced renal failure. I. A role for altered renal microcirculation.
    Heyman SN; Darmon D; Goldfarb M; Bitz H; Shina A; Rosen S; Brezis M
    Exp Nephrol; 2000; 8(4-5):266-74. PubMed ID: 10940726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclooxygenase-2 participates in tubular flow-dependent afferent arteriolar tone: interaction with neuronal NOS.
    Ichihara A; Imig JD; Inscho EW; Navar LG
    Am J Physiol; 1998 Oct; 275(4):F605-12. PubMed ID: 9755132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autoregulation of afferent arteriolar blood flow in juxtamedullary nephrons.
    Takenaka T; Harrison-Bernard LM; Inscho EW; Carmines PK; Navar LG
    Am J Physiol; 1994 Nov; 267(5 Pt 2):F879-87. PubMed ID: 7977792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.