BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

745 related articles for article (PubMed ID: 9460050)

  • 1. Volume regulation in red blood cells of the frog Rana temporaria after osmotic shrinkage and swelling.
    Gusev GP; Lapin AV; Agulakova NI
    Membr Cell Biol; 1997; 11(3):305-17. PubMed ID: 9460050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition and stimulation of K+ transport across the frog erythrocyte membrane by furosemide, DIOA, DIDS and quinine.
    Gusev GP; Lapin AV; Agalakova NI
    Gen Physiol Biophys; 1999 Sep; 18(3):269-82. PubMed ID: 10703743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of a [K+,Cl-]-cotransport system in human red cells by its sensitivity to [(dihydroindenyl)oxy]alkanoic acids: regulation of cell swelling and distinction from the bumetanide-sensitive [Na+,K+,Cl-]-cotransport system.
    Garay RP; Nazaret C; Hannaert PA; Cragoe EJ
    Mol Pharmacol; 1988 Jun; 33(6):696-701. PubMed ID: 3380083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of fluoride and vanadate on K+ transport across the erythrocyte membrane of Rana temporaria.
    Agalakova NI; Lapin AV; Gusev GP
    Membr Cell Biol; 2000; 13(4):527-36. PubMed ID: 10926370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An amiloride-sensitive, volume-dependent Na+ transport across the lamprey (Lampetra fluviatilis) erythrocyte membrane.
    Gusev GP; Sherstobitov AO
    Gen Physiol Biophys; 1996 Apr; 15(2):129-43. PubMed ID: 8899417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amiloride-sensitive sodium transport in lamprey red blood cells: evidence for two distinct transport pathways.
    Gusev GP; Ivanova TI
    Gen Physiol Biophys; 2004 Dec; 23(4):443-56. PubMed ID: 15815079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of separate K+ and Cl- channels and of Na+/Cl- cotransport in volume regulation in Ehrlich cells.
    Hoffmann EK
    Fed Proc; 1985 Jun; 44(9):2513-9. PubMed ID: 2581818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volume regulation by human lymphocytes: characterization of the ionic basis for regulatory volume decrease.
    Cheung RK; Grinstein S; Dosch HM; Gelfand EW
    J Cell Physiol; 1982 Aug; 112(2):189-96. PubMed ID: 6288741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic mechanisms of regulatory volume increase (RVI) in the human hepatoma cell-line HepG2.
    Wehner F; Lawonn P; Tinel H
    Pflugers Arch; 2002 Mar; 443(5-6):779-90. PubMed ID: 11889576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotonic media and glutamate-induced ion transport and volume responses in primary astrocyte cultures.
    Kimelberg HK
    J Physiol (Paris); 1987; 82(4):294-303. PubMed ID: 3503932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Potassium ion transport in the erythrocytes of the frog Rana ridibunda].
    Agalakova NI; Lapin AV; Gusev GP
    Zh Evol Biokhim Fiziol; 1995; 31(2):161-9. PubMed ID: 7483911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volume-regulating behavior of human platelets.
    Livne A; Grinstein S; Rothstein A
    J Cell Physiol; 1987 Jun; 131(3):354-63. PubMed ID: 2439517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of lithium across the lamprey (Lampetra fluviatilis) erythrocyte membrane.
    Gusev GP; Agalakova NI; Ivanova TI
    Gen Physiol Biophys; 2008 Dec; 27(4):284-90. PubMed ID: 19202202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volume-dependent regulation of sodium and potassium fluxes in cultured vascular smooth muscle cells: dependence on medium osmolality and regulation by signalling systems.
    Orlov SN; Resink TJ; Bernhardt J; Buhler FR
    J Membr Biol; 1992 Aug; 129(2):199-210. PubMed ID: 1331467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium transport in red blood cells of frog Rana temporaria: demonstration of a K-Cl cotransport.
    Gusev GP; Agalakova NI; Lapin AV
    J Comp Physiol B; 1995; 165(3):230-7. PubMed ID: 7665736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen-sensitive regulatory volume increase and Na transport in red blood cells from the cane toad, Bufo marinus.
    Kristensen K; Koldkjaer P; Berenbrink M; Wang T
    J Exp Biol; 2007 Jul; 210(Pt 13):2290-9. PubMed ID: 17575034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na-K-Cl cotransport in normal and glaucomatous human trabecular meshwork cells.
    Putney LK; Brandt JD; O'Donnell ME
    Invest Ophthalmol Vis Sci; 1999 Feb; 40(2):425-34. PubMed ID: 9950602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the K+ (Na+)/H+ monovalent cation exchanger in the human red blood cell membrane: effects of transport inhibitors.
    Bernhardt I; Bogdanova AY; Kummerow D; Kiessling K; Hamann J; Ellory JC
    Gen Physiol Biophys; 1999 Jun; 18(2):119-37. PubMed ID: 10517288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dramatic magnesium efflux induced by high potassium in rat thymocytes.
    FĂ©ray JC; Guerrouache K; Garay RP
    Biochem Biophys Res Commun; 2000 Feb; 268(3):673-6. PubMed ID: 10679263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cation fluxes and volume regulation by human lymphocytes.
    Bui AH; Wiley JS
    J Cell Physiol; 1981 Jul; 108(1):47-54. PubMed ID: 7263767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.