These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 9461078)
1. Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction. Yamashita I; Hasegawa K; Suzuki H; Vonderviszt F; Mimori-Kiyosue Y; Namba K Nat Struct Biol; 1998 Feb; 5(2):125-32. PubMed ID: 9461078 [TBL] [Abstract][Full Text] [Related]
2. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Samatey FA; Imada K; Nagashima S; Vonderviszt F; Kumasaka T; Yamamoto M; Namba K Nature; 2001 Mar; 410(6826):331-7. PubMed ID: 11268201 [TBL] [Abstract][Full Text] [Related]
3. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Yonekura K; Maki-Yonekura S; Namba K Nature; 2003 Aug; 424(6949):643-50. PubMed ID: 12904785 [TBL] [Abstract][Full Text] [Related]
4. Conformational change of flagellin for polymorphic supercoiling of the flagellar filament. Maki-Yonekura S; Yonekura K; Namba K Nat Struct Mol Biol; 2010 Apr; 17(4):417-22. PubMed ID: 20228803 [TBL] [Abstract][Full Text] [Related]
5. A "mechanistic" explanation of the multiple helical forms adopted by bacterial flagellar filaments. Calladine CR; Luisi BF; Pratap JV J Mol Biol; 2013 Mar; 425(5):914-28. PubMed ID: 23274110 [TBL] [Abstract][Full Text] [Related]
6. The structure of the R-type straight flagellar filament of Salmonella at 9 A resolution by electron cryomicroscopy. Mimori Y; Yamashita I; Murata K; Fujiyoshi Y; Yonekura K; Toyoshima C; Namba K J Mol Biol; 1995 May; 249(1):69-87. PubMed ID: 7776377 [TBL] [Abstract][Full Text] [Related]
7. Direct interaction of flagellin termini essential for polymorphic ability of flagellar filament. Mimori-Kiyosue Y; Vonderviszt F; Yamashita I; Fujiyoshi Y; Namba K Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15108-13. PubMed ID: 8986772 [TBL] [Abstract][Full Text] [Related]
8. The axial alpha-helices and radial spokes in the core of the cryo-negatively stained complex flagellar filament of Pseudomonas rhodos: recovering high-resolution details from a flexible helical assembly. Cohen-Krausz S; Trachtenberg S J Mol Biol; 2003 Aug; 331(5):1093-108. PubMed ID: 12927544 [TBL] [Abstract][Full Text] [Related]
9. Locations of terminal segments of flagellin in the filament structure and their roles in polymerization and polymorphism. Mimori-Kiyosue Y; Vonderviszt F; Namba K J Mol Biol; 1997 Jul; 270(2):222-37. PubMed ID: 9236124 [TBL] [Abstract][Full Text] [Related]
10. Structural and Functional Comparison of Yamaguchi T; Toma S; Terahara N; Miyata T; Ashihara M; Minamino T; Namba K; Kato T Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32041169 [TBL] [Abstract][Full Text] [Related]
11. Radial mass analysis of the flagellar filament of Salmonella: implications for the subunit folding. Yamashita I; Vonderviszt F; Mimori Y; Suzuki H; Oosawa K; Namba K J Mol Biol; 1995 Nov; 253(4):547-58. PubMed ID: 7473733 [TBL] [Abstract][Full Text] [Related]
12. Domain organization of the subunit of the Salmonella typhimurium flagellar hook. Morgan DG; Macnab RM; Francis NR; DeRosier DJ J Mol Biol; 1993 Jan; 229(1):79-84. PubMed ID: 8421316 [TBL] [Abstract][Full Text] [Related]
14. Non-helical perturbations of the flagellar filament: Salmonella typhimurium SJW117 at 9.6 A resolution. Trachtenberg S; DeRosier DJ; Zemlin F; Beckmann E J Mol Biol; 1998 Mar; 276(4):759-73. PubMed ID: 9500917 [TBL] [Abstract][Full Text] [Related]
15. Flagellar filaments of the deep-sea bacteria Idiomarina loihiensis belong to a family different from those of Salmonella typhimurium. Shibata S; Alam M; Aizawa S J Mol Biol; 2005 Sep; 352(3):510-6. PubMed ID: 16120444 [TBL] [Abstract][Full Text] [Related]