These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 9461301)
1. Nucleotide binding sites in wild-type creatine kinase and in W227Y mutant probed by photochemical release of nucleotides and infrared difference spectroscopy. Raimbault C; Perraut C; Marcillat O; Buchet R; Vial C Eur J Biochem; 1997 Dec; 250(3):773-82. PubMed ID: 9461301 [TBL] [Abstract][Full Text] [Related]
2. Structural changes of mitochondrial creatine kinase upon binding of ADP, ATP, or Pi, observed by reaction-induced infrared difference spectra. Granjon T; Vacheron MJ; Vial C; Buchet R Biochemistry; 2001 Mar; 40(9):2988-94. PubMed ID: 11258911 [TBL] [Abstract][Full Text] [Related]
3. Magnesium-adenosine diphosphate binding sites in wild-type creatine kinase and in mutants: role of aromatic residues probed by Raman and infrared spectroscopies. Hagemann H; Marcillat O; Buchet R; Vial C Biochemistry; 2000 Aug; 39(31):9251-6. PubMed ID: 10924118 [TBL] [Abstract][Full Text] [Related]
4. ADP-binding and ATP-binding sites in native and proteinase-K-digested creatine kinase, probed by reaction-induced difference infrared spectroscopy. Raimbault C; Clottes E; Leydier C; Vial C; Buchet R Eur J Biochem; 1997 Aug; 247(3):1197-208. PubMed ID: 9288948 [TBL] [Abstract][Full Text] [Related]
5. Changes of creatine kinase secondary structure induced by the release of nucleotides from caged compounds. An infrared difference-spectroscopy study. Raimbault C; Buchet R; Vial C Eur J Biochem; 1996 Aug; 240(1):134-42. PubMed ID: 8797846 [TBL] [Abstract][Full Text] [Related]
6. Conformational changes of arginine kinase induced by photochemical release of nucleotides from caged nucleotides--an infrared difference-spectroscopy investigation. Raimbault C; Besson F; Buchet R Eur J Biochem; 1997 Mar; 244(2):343-51. PubMed ID: 9118999 [TBL] [Abstract][Full Text] [Related]
7. Structural changes of the sarcoplasmic reticulum Ca(2+)-ATPase upon nucleotide binding studied by fourier transform infrared spectroscopy. von Germar F; Barth A; Mäntele W Biophys J; 2000 Mar; 78(3):1531-40. PubMed ID: 10692337 [TBL] [Abstract][Full Text] [Related]
8. Asparagine 285 plays a key role in transition state stabilization in rabbit muscle creatine kinase. Borders CL; MacGregor KM; Edmiston PL; Gbeddy ER; Thomenius MJ; Mulligan GB; Snider MJ Protein Sci; 2003 Mar; 12(3):532-7. PubMed ID: 12592023 [TBL] [Abstract][Full Text] [Related]
9. ATP-Binding site of annexin VI characterized by photochemical release of nucleotide and infrared difference spectroscopy. Bandorowicz-Pikuła J; Wrzosek A; Danieluk M; Pikula S; Buchet R Biochem Biophys Res Commun; 1999 Oct; 263(3):775-9. PubMed ID: 10512756 [TBL] [Abstract][Full Text] [Related]
10. Creatine kinase: the reactive cysteine is required for synergism but is nonessential for catalysis. Furter R; Furter-Graves EM; Wallimann T Biochemistry; 1993 Jul; 32(27):7022-9. PubMed ID: 8334132 [TBL] [Abstract][Full Text] [Related]
11. The active site histidines of creatine kinase. A critical role of His 61 situated on a flexible loop. Forstner M; Müller A; Stolz M; Wallimann T Protein Sci; 1997 Feb; 6(2):331-9. PubMed ID: 9041634 [TBL] [Abstract][Full Text] [Related]
12. Generation of an active monomer of rabbit muscle creatine kinase by site-directed mutagenesis: the effect of quaternary structure on catalysis and stability. Cox JM; Davis CA; Chan C; Jourden MJ; Jorjorian AD; Brym MJ; Snider MJ; Borders CL; Edmiston PL Biochemistry; 2003 Feb; 42(7):1863-71. PubMed ID: 12590573 [TBL] [Abstract][Full Text] [Related]
13. A putative consensus sequence for the nucleotide-binding site of annexin A6. Bandorowicz-Pikula J; Kirilenko A; van Deursen R; Golczak M; Kühnel M; Lancelin JM; Pikula S; Buchet R Biochemistry; 2003 Aug; 42(30):9137-46. PubMed ID: 12885247 [TBL] [Abstract][Full Text] [Related]
14. Nucleotide binding to creatine kinase: an isothermal titration microcalorimetry study. Forstner M; Berger C; Wallimann T FEBS Lett; 1999 Nov; 461(1-2):111-4. PubMed ID: 10561506 [TBL] [Abstract][Full Text] [Related]
15. Conformational flexibility and structure of creatine kinase. Haugland RP J Supramol Struct; 1975; 3(2):192-9. PubMed ID: 1195743 [TBL] [Abstract][Full Text] [Related]
16. Photoaffinity labelling of arginine kinase and creatine kinase with a gamma-P-substituted arylazido analogue of ATP. Vandest P; Labbe JP; Kassab R Eur J Biochem; 1980 Mar; 104(2):433-42. PubMed ID: 6244950 [TBL] [Abstract][Full Text] [Related]
18. Binding of adenosine 5'-diphosphate to creatine kinase. An investigation using intermolecular nuclear Overhauser effect measurements. James TL Biochemistry; 1976 Oct; 15(21):4724-30. PubMed ID: 974086 [TBL] [Abstract][Full Text] [Related]
19. Creatine kinase: essential arginine residues at the nucleotide binding site identified by chemical modification and high-resolution tandem mass spectrometry. Wood TD; Guan Z; Borders CL; Chen LH; Kenyon GL; McLafferty FW Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3362-5. PubMed ID: 9520370 [TBL] [Abstract][Full Text] [Related]
20. Mg-nucleotides induced dissociation of liposome-bound creatine kinase: reversible changes in its secondary structure and in the fluidity of the bilayer. Granjon T; Vacheron MJ; Buchet R; Vial C Mol Membr Biol; 2003; 20(2):163-9. PubMed ID: 12851072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]