BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 9461501)

  • 1. Comparison of human red cell lysis by hypochlorous and hypobromous acids: insights into the mechanism of lysis.
    Vissers MC; Carr AC; Chapman AL
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):131-8. PubMed ID: 9461501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane changes associated with lysis of red blood cells by hypochlorous acid.
    Vissers MC; Stern A; Kuypers F; van den Berg J; Winterbourn CC
    Free Radic Biol Med; 1994 Jun; 16(6):703-12. PubMed ID: 8070673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypothiocyanous acid is a more potent inducer of apoptosis and protein thiol depletion in murine macrophage cells than hypochlorous acid or hypobromous acid.
    Lloyd MM; van Reyk DM; Davies MJ; Hawkins CL
    Biochem J; 2008 Sep; 414(2):271-80. PubMed ID: 18459943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of low-density lipoprotein modification by myeloperoxidase-derived hypochlorous and hypobromous acids.
    Carr AC; Decker EA; Park Y; Frei B
    Free Radic Biol Med; 2001 Jul; 31(1):62-72. PubMed ID: 11425491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of red cell membrane lipids by hypochlorous acid and haemolysis by preformed lipid chlorohydrins.
    Carr AC; Vissers MC; Domigan NM; Winterbourn CC
    Redox Rep; 1997; 3(5-6):263-71. PubMed ID: 9754324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypochlorous acid-induced membrane pore formation in red blood cells.
    Zavodnik LB; Zavodnik IB; Lapshyna EA; Buko VU; Bryszewska MJ
    Bioelectrochemistry; 2002 Dec; 58(2):157-61. PubMed ID: 12414321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypochlorite- and hypobromite-mediated radical formation and its role in cell lysis.
    Hawkins CL; Brown BE; Davies MJ
    Arch Biochem Biophys; 2001 Nov; 395(2):137-45. PubMed ID: 11697850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypochlorous acid-induced oxidative damage of human red blood cells: effects of tert-butyl hydroperoxide and nitrite on the HOCl reaction with erythrocytes.
    Zavodnik IB; Lapshina EA; Zavodnik LB; Soszyński M; Bartosz G; Bryszewska M
    Bioelectrochemistry; 2002 Dec; 58(2):127-35. PubMed ID: 12414318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactions of Methotrexate with Hypobromous Acid and Hypochlorous Acid.
    Suzuki T; Takeuchi R
    Chem Pharm Bull (Tokyo); 2019; 67(11):1250-1254. PubMed ID: 31685753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypobromous acid, a powerful endogenous electrophile: Experimental and theoretical studies.
    Ximenes VF; Morgon NH; de Souza AR
    J Inorg Biochem; 2015 May; 146():61-8. PubMed ID: 25771434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorination of cholesterol in cell membranes by hypochlorous acid.
    Carr AC; van den Berg JJ; Winterbourn CC
    Arch Biochem Biophys; 1996 Aug; 332(1):63-9. PubMed ID: 8806710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypochlorous acid-induced lysis of human erythrocytes. Inhibition of cellular damage by the isoflavonoid genistein-8-C-glucoside.
    Zavodnik LB; Zavodnik IB; Lapshina EA; Shkodich AP; Bryszewska M; Buko VU
    Biochemistry (Mosc); 2000 Aug; 65(8):946-51. PubMed ID: 11002188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myeloperoxidase-derived oxidants selectively disrupt the protein core of the heparan sulfate proteoglycan perlecan.
    Rees MD; Whitelock JM; Malle E; Chuang CY; Iozzo RV; Nilasaroya A; Davies MJ
    Matrix Biol; 2010 Jan; 29(1):63-73. PubMed ID: 19788922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential reactivities of hypochlorous and hypobromous acids with purified Escherichia coli phospholipid: formation of haloamines and halohydrins.
    Carr AC; van den Berg JJ; Winterbourn CC
    Biochim Biophys Acta; 1998 Jun; 1392(2-3):254-64. PubMed ID: 9630661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of intracellular glutathione after exposure of human red blood cells to hypochlorous acid.
    Vissers MC; Winterbourn CC
    Biochem J; 1995 Apr; 307 ( Pt 1)(Pt 1):57-62. PubMed ID: 7717994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of lysine during protein modification by HOCl and HOBr: halogen-transfer agent or sacrificial antioxidant?
    Sivey JD; Howell SC; Bean DJ; McCurry DL; Mitch WA; Wilson CJ
    Biochemistry; 2013 Feb; 52(7):1260-71. PubMed ID: 23327477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myeloperoxidase-derived oxidants rapidly oxidize and disrupt zinc-cysteine/histidine clusters in proteins.
    Cook NL; Pattison DI; Davies MJ
    Free Radic Biol Med; 2012 Dec; 53(11):2072-80. PubMed ID: 23032100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the irreversible destruction of reduced nicotinamide nucleotides by hypohalous acids.
    Prütz WA; Kissner R; Koppenol WH; Rüegger H
    Arch Biochem Biophys; 2000 Aug; 380(1):181-91. PubMed ID: 10900148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids.
    Spickett CM; Jerlich A; Panasenko OM; Arnhold J; Pitt AR; Stelmaszyńska T; Schaur RJ
    Acta Biochim Pol; 2000; 47(4):889-99. PubMed ID: 11996112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of hypochlorous acid-mediated reactions by desferrioxamine. Implications for the mechanism of cellular injury by neutrophils.
    Vissers MC; Fantone JC
    Free Radic Biol Med; 1990; 8(4):331-7. PubMed ID: 2165973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.