BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9461511)

  • 1. Mechanistic consequences of replacing the active-site nucleophile Glu-358 in Agrobacterium sp. beta-glucosidase with a cysteine residue.
    Lawson SL; Warren RA; Withers SG
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):203-9. PubMed ID: 9461511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic consequences of mutation of the active site nucleophile Glu 358 in Agrobacterium beta-glucosidase.
    Withers SG; Rupitz K; Trimbur D; Warren RA
    Biochemistry; 1992 Oct; 31(41):9979-85. PubMed ID: 1356439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic consequences of mutation of active site carboxylates in a retaining beta-1,4-glycanase from Cellulomonas fimi.
    MacLeod AM; Tull D; Rupitz K; Warren RA; Withers SG
    Biochemistry; 1996 Oct; 35(40):13165-72. PubMed ID: 8855954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the acid/base catalyst in Agrobacterium faecalis beta-glucosidase by kinetic analysis of mutants.
    Wang Q; Trimbur D; Graham R; Warren RA; Withers SG
    Biochemistry; 1995 Nov; 34(44):14554-62. PubMed ID: 7578061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase.
    Burmeister WP; Cottaz S; Driguez H; Iori R; Palmieri S; Henrissat B
    Structure; 1997 May; 5(5):663-75. PubMed ID: 9195886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The acid/base catalyst in the exoglucanase/xylanase from Cellulomonas fimi is glutamic acid 127: evidence from detailed kinetic studies of mutants.
    MacLeod AM; Lindhorst T; Withers SG; Warren RA
    Biochemistry; 1994 May; 33(20):6371-6. PubMed ID: 7910761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed evolution of a glycosynthase from Agrobacterium sp. increases its catalytic activity dramatically and expands its substrate repertoire.
    Kim YW; Lee SS; Warren RA; Withers SG
    J Biol Chem; 2004 Oct; 279(41):42787-93. PubMed ID: 15252054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate-induced inactivation of a crippled beta-glucosidase mutant: identification of the labeled amino acid and mutagenic analysis of its role.
    Gebler JC; Trimbur DE; Warren AJ; Aebersold R; Namchuk M; Withers SG
    Biochemistry; 1995 Nov; 34(44):14547-53. PubMed ID: 7578060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Region-directed mutagenesis of residues surrounding the active site nucleophile in beta-glucosidase from Agrobacterium faecalis.
    Trimbur DE; Warren RA; Withers SG
    J Biol Chem; 1992 May; 267(15):10248-51. PubMed ID: 1587814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The E358S mutant of Agrobacterium sp. beta-glucosidase is a greatly improved glycosynthase.
    Mayer C; Zechel DL; Reid SP; Warren RA; Withers SG
    FEBS Lett; 2000 Jan; 466(1):40-4. PubMed ID: 10648808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assignment of sweet almond beta-glucosidase as a family 1 glycosidase and identification of its active site nucleophile.
    He S; Withers SG
    J Biol Chem; 1997 Oct; 272(40):24864-7. PubMed ID: 9312086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism-based inhibitors of glycosidases: design and applications.
    Kallemeijn WW; Witte MD; Wennekes T; Aerts JM
    Adv Carbohydr Chem Biochem; 2014; 71():297-338. PubMed ID: 25480507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replacement of the catalytic nucleophile aspartyl residue of dextran glucosidase by cysteine sulfinate enhances transglycosylation activity.
    Saburi W; Kobayashi M; Mori H; Okuyama M; Kimura A
    J Biol Chem; 2013 Nov; 288(44):31670-7. PubMed ID: 24052257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating the Nucleophile of a Glycoside Hydrolase through Site-Specific Incorporation of Fluoroglutamic Acids.
    Kötzler MP; Robinson K; Chen HM; Okon M; McIntosh LP; Withers SG
    J Am Chem Soc; 2018 Jul; 140(26):8268-8276. PubMed ID: 29894173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic mechanism of a family 3 beta-glucosidase and mutagenesis study on residue Asp-247.
    Li YK; Chir J; Chen FY
    Biochem J; 2001 May; 355(Pt 3):835-40. PubMed ID: 11311148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the mechanism of Bacillus 1,3-1,4-beta-D-glucan 4-glucanohydrolases by chemical rescue of inactive mutants at catalytically essential residues.
    Viladot JL; de Ramon E; Durany O; Planas A
    Biochemistry; 1998 Aug; 37(32):11332-42. PubMed ID: 9698381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study.
    Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D
    Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of both shortening and lengthening the active site nucleophile of Bacillus circulans xylanase on catalytic activity.
    Lawson SL; Wakarchuk WW; Withers SG
    Biochemistry; 1996 Aug; 35(31):10110-8. PubMed ID: 8756474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trapping covalent intermediates on beta-glycosidases.
    Wicki J; Rose DR; Withers SG
    Methods Enzymol; 2002; 354():84-105. PubMed ID: 12418218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the acid/base catalyst of a glycoside hydrolase family 3 (GH3) beta-glucosidase from Aspergillus niger ASKU28.
    Thongpoo P; McKee LS; Araújo AC; Kongsaeree PT; Brumer H
    Biochim Biophys Acta; 2013 Mar; 1830(3):2739-49. PubMed ID: 23201198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.