These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 9461520)

  • 21. Chemical mechanism and rate-limiting steps in the reaction catalyzed by Streptococcus faecalis NADH peroxidase.
    Stoll VS; Blanchard JS
    Biochemistry; 1991 Jan; 30(4):942-8. PubMed ID: 1899199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phospholipid reverse micelles as a milieu of an enzyme reaction in an apolar system.
    Ohshima A; Narita H; Kito M
    J Biochem; 1983 May; 93(5):1421-5. PubMed ID: 6885730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alkaline phosphatase is an almost perfect enzyme.
    Simopoulos TT; Jencks WP
    Biochemistry; 1994 Aug; 33(34):10375-80. PubMed ID: 8068674
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and activity of trypsin in reverse micelles.
    Walde P; Peng Q; Fadnavis NW; Battistel E; Luisi PL
    Eur J Biochem; 1988 Apr; 173(2):401-9. PubMed ID: 3360018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reactivity of trypsin in reverse micelles: pH-effects on the W0 versus enzyme activity profiles.
    Fadnavis NW; Babu RL; Deshpande A
    Biochimie; 1998 Dec; 80(12):1025-30. PubMed ID: 9924980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of proton transfer in the 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni.
    Chang YH; Chuang LY; Hwang CC
    J Biol Chem; 2007 Nov; 282(47):34306-14. PubMed ID: 17893142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The behavior of proteases in lecithin reverse micelles.
    Peng QQ; Luisi PL
    Eur J Biochem; 1990 Mar; 188(2):471-80. PubMed ID: 2180704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanistic studies on thrombin catalysis.
    Stone SR; Betz A; Hofsteenge J
    Biochemistry; 1991 Oct; 30(41):9841-8. PubMed ID: 1911776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insight into tyrosine phosphorylation in v-Fps using proton inventory techniques.
    Adams JA
    Biochemistry; 1996 Aug; 35(33):10949-56. PubMed ID: 8718888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transition-state structure in the yeast alcohol dehydrogenase reaction: the magnitude of solvent and alpha-secondary hydrogen isotope effects.
    Welsh KM; Creighton DJ; Klinman JP
    Biochemistry; 1980 May; 19(10):2005-16. PubMed ID: 6990968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae.
    Lin Y; Volkman J; Nicholas KM; Yamamoto T; Eguchi T; Nimmo SL; West AH; Cook PF
    Biochemistry; 2008 Apr; 47(13):4169-80. PubMed ID: 18321070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of the rate-limiting steps for malic enzyme by the use of isotope effects and other kinetic studies.
    Schimerlik MI; Grimshaw CE; Cleland WW
    Biochemistry; 1977 Feb; 16(4):571-6. PubMed ID: 13820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human erythrocyte glutathione reductase: chemical mechanism and structure of the transition state for hydride transfer.
    Sweet WL; Blanchard JS
    Biochemistry; 1991 Sep; 30(35):8702-9. PubMed ID: 1888731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Steady-state kinetic isotope effects support a complex role of Arg226 in the proposed desulfonation mechanism of alkanesulfonate monooxygenase.
    Robbins JM; Ellis HR
    Biochemistry; 2014 Jan; 53(1):161-8. PubMed ID: 24321058
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic isotope effect studies on milk xanthine oxidase and on chicken liver xanthine dehydrogenase.
    D'Ardenne SC; Edmondson DE
    Biochemistry; 1990 Sep; 29(38):9046-52. PubMed ID: 2271576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solvent and primary deuterium isotope effects show that lactate CH and OH bond cleavages are concerted in Y254F flavocytochrome b2, consistent with a hydride transfer mechanism.
    Sobrado P; Fitzpatrick PF
    Biochemistry; 2003 Dec; 42(51):15208-14. PubMed ID: 14690431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solvent isotope effects for lipoprotein lipase catalyzed hydrolysis of water-soluble p-nitrophenyl esters.
    Quinn DM
    Biochemistry; 1985 Jun; 24(13):3144-9. PubMed ID: 4027237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of the reaction progress of calcineurin with Mn2+ and Mg2+.
    Martin BL; Jurado LA; Hengge AC
    Biochemistry; 1999 Mar; 38(11):3386-92. PubMed ID: 10079083
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The pH dependence of the kinetic parameters of ketol acid reductoisomerase indicates a proton shuttle mechanism for alkyl migration.
    Mrachko GT; Chunduru SK; Calvo KC
    Arch Biochem Biophys; 1992 May; 294(2):446-53. PubMed ID: 1567200
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for an induced conformational change in the catalytic mechanism of homoisocitrate dehydrogenase for Saccharomyces cerevisiae: Characterization of the D271N mutant enzyme.
    Hsu C; West AH; Cook PF
    Arch Biochem Biophys; 2015 Oct; 584():20-7. PubMed ID: 26325079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.