BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 9461557)

  • 1. Characterization of a cellobiose dehydrogenase from Humicola insolens.
    Schou C; Christensen MH; Schülein M
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):565-71. PubMed ID: 9461557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellobiose dehydrogenase from the fungi Phanerochaete chrysosporium and Humicola insolens. A flavohemoprotein from Humicola insolens contains 6-hydroxy-FAD as the dominant active cofactor.
    Igarashi K; Verhagen MF; Samejima M; Schülein M; Eriksson KE; Nishino T
    J Biol Chem; 1999 Feb; 274(6):3338-44. PubMed ID: 9920875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium.
    Bao W; Usha SN; Renganathan V
    Arch Biochem Biophys; 1993 Feb; 300(2):705-13. PubMed ID: 8434950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a cellobiose dehydrogenase in the cellulolytic fungus Sporotrichum (Chrysosporium) thermophile.
    Coudray MR; Canevascini G; Meier H
    Biochem J; 1982 Apr; 203(1):277-84. PubMed ID: 7103940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of cellobiose dehydrogenase from the plant pathogen Sclerotium (Athelia) rolfsii.
    Baminger U; Subramaniam SS; Renganathan V; Haltrich D
    Appl Environ Microbiol; 2001 Apr; 67(4):1766-74. PubMed ID: 11282631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of a carbohydrate: acceptor oxidoreductase from Paraconiothyrium sp. that produces lactobionic acid efficiently.
    Kiryu T; Nakano H; Kiso T; Murakami H
    Biosci Biotechnol Biochem; 2008 Mar; 72(3):833-41. PubMed ID: 18323642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation of cellobiose dehydrogenases from the white-rot fungi Trametes pubescens and Trametes villosa.
    Ludwig R; Salamon A; Varga J; Zámocky M; Peterbauer CK; Kulbe KD; Haltrich D
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):213-22. PubMed ID: 14666391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of the cellobiose dehydrogenase from the brown-rot fungus Coniophora puteana (Schum ex Fr.) Karst.
    Schmidhalter DR; Canevascini G
    Arch Biochem Biophys; 1993 Feb; 300(2):559-63. PubMed ID: 8434937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellobiose oxidase from Phanerochaete chrysosporium. Stopped-flow spectrophotometric analysis of pH-dependent reduction.
    Samejima M; Phillips RS; Eriksson KE
    FEBS Lett; 1992 Jul; 306(2-3):165-8. PubMed ID: 1321733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentum.
    Ayers AR; Ayers SB; Eriksson KE
    Eur J Biochem; 1978 Sep; 90(1):171-81. PubMed ID: 710416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of inter-domain electron transfer in flavocytochrome cellobiose dehydrogenase from the white-rot fungus Phanerochaete chrysosporium.
    Igarashi K; Momohara I; Nishino T; Samejima M
    Biochem J; 2002 Jul; 365(Pt 2):521-6. PubMed ID: 11939907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of the catalytic properties of cellobiose:quinone oxidoreductase and cellobiose oxidase from Phanerochaete chrysosporium.
    Samejima M; Eriksson KE
    Eur J Biochem; 1992 Jul; 207(1):103-7. PubMed ID: 1321038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Isolation and characterization of a cellobiose dehydrogenase formed by a asporogenic mycelial fungus INBI 2-26(-)].
    Karapetian KN; Iachkova SN; Vasil'chenko LG; Borzykh MN; Rabinovich ML
    Prikl Biokhim Mikrobiol; 2003; 39(6):642-51. PubMed ID: 14714477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Some properties of cellobiose oxidase from the white-rot fungus Sporotrichum pulverulentum.
    Morpeth FF
    Biochem J; 1985 Jun; 228(3):557-64. PubMed ID: 2992449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics and reactivity of the flavin and heme cofactors of cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Cameron MD; Aust SD
    Biochemistry; 2000 Nov; 39(44):13595-601. PubMed ID: 11063597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical oxidation of water by a cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Feng J; Himmel ME; Decker SR
    Biotechnol Lett; 2005 Apr; 27(8):555-60. PubMed ID: 15973489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellobiose oxidase from Phanerochaete chrysosporium can be cleaved by papain into two domains.
    Henriksson G; Pettersson G; Johansson G; Ruiz A; Uzcategui E
    Eur J Biochem; 1991 Feb; 196(1):101-6. PubMed ID: 2001691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase. Kinetic comparison with neutrophil NADPH oxidase and yeast flavocytochrome b2.
    Kremer SM; Wood PM
    Eur J Biochem; 1992 Apr; 205(1):133-8. PubMed ID: 1555575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium.
    Igarashi K; Yoshida M; Matsumura H; Nakamura N; Ohno H; Samejima M; Nishino T
    FEBS J; 2005 Jun; 272(11):2869-77. PubMed ID: 15943818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellobiose dehydrogenase from Schizophyllum commune: purification and study of some catalytic, inactivation, and cellulose-binding properties.
    Fang J; Liu W; Gao PJ
    Arch Biochem Biophys; 1998 May; 353(1):37-46. PubMed ID: 9578598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.