BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 9461595)

  • 41. Cell cycle regulation by the ubiquitin pathway.
    Pagano M
    FASEB J; 1997 Nov; 11(13):1067-75. PubMed ID: 9367342
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A refined two-hybrid system reveals that SCF(Cdc4)-dependent degradation of Swi5 contributes to the regulatory mechanism of S-phase entry.
    Kishi T; Ikeda A; Koyama N; Fukada J; Nagao R
    Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14497-502. PubMed ID: 18787112
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Roles of ubiquitin-mediated proteolysis in cell cycle control.
    Hershko A
    Curr Opin Cell Biol; 1997 Dec; 9(6):788-99. PubMed ID: 9425343
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Degradation of B-Myb by ubiquitin-mediated proteolysis: involvement of the Cdc34-SCF(p45Skp2) pathway.
    Charrasse S; Carena I; Brondani V; Klempnauer KH; Ferrari S
    Oncogene; 2000 Jun; 19(26):2986-95. PubMed ID: 10871850
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Cdc42p effector Gic2p is targeted for ubiquitin-dependent degradation by the SCFGrr1 complex.
    Jaquenoud M; Gulli MP; Peter K; Peter M
    EMBO J; 1998 Sep; 17(18):5360-73. PubMed ID: 9736614
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Human Cdc34 and Rad6B ubiquitin-conjugating enzymes target repressors of cyclic AMP-induced transcription for proteolysis.
    Pati D; Meistrich ML; Plon SE
    Mol Cell Biol; 1999 Jul; 19(7):5001-13. PubMed ID: 10373550
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle.
    Freed E; Lacey KR; Huie P; Lyapina SA; Deshaies RJ; Stearns T; Jackson PK
    Genes Dev; 1999 Sep; 13(17):2242-57. PubMed ID: 10485847
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transferable domain in the G(1) cyclin Cln2 sufficient to switch degradation of Sic1 from the E3 ubiquitin ligase SCF(Cdc4) to SCF(Grr1).
    Berset C; Griac P; Tempel R; La Rue J; Wittenberg C; Lanker S
    Mol Cell Biol; 2002 Jul; 22(13):4463-76. PubMed ID: 12052857
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The spike of S phase cyclin Cig2 expression at the G1-S border in fission yeast requires both APC and SCF ubiquitin ligases.
    Yamano H; Kitamura K; Kominami K; Lehmann A; Katayama S; Hunt T; Toda T
    Mol Cell; 2000 Dec; 6(6):1377-87. PubMed ID: 11163211
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of a positive regulator of the cell cycle ubiquitin-conjugating enzyme Cdc34 (Ubc3).
    Prendergast JA; Ptak C; Kornitzer D; Steussy CN; Hodgins R; Goebl M; Ellison MJ
    Mol Cell Biol; 1996 Feb; 16(2):677-84. PubMed ID: 8552096
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel CDC34 (UBC3) ubiquitin-conjugating enzyme mutants obtained by charge-to-alanine scanning mutagenesis.
    Pitluk ZW; McDonough M; Sangan P; Gonda DK
    Mol Cell Biol; 1995 Mar; 15(3):1210-9. PubMed ID: 7862115
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cdc34 C-terminal tail phosphorylation regulates Skp1/cullin/F-box (SCF)-mediated ubiquitination and cell cycle progression.
    Sadowski M; Mawson A; Baker R; Sarcevic B
    Biochem J; 2007 Aug; 405(3):569-81. PubMed ID: 17461777
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Human CUL1 forms an evolutionarily conserved ubiquitin ligase complex (SCF) with SKP1 and an F-box protein.
    Lyapina SA; Correll CC; Kipreos ET; Deshaies RJ
    Proc Natl Acad Sci U S A; 1998 Jun; 95(13):7451-6. PubMed ID: 9636170
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The bacterially expressed yeast CDC34 gene product can undergo autoubiquitination to form a multiubiquitin chain-linked protein.
    Banerjee A; Gregori L; Xu Y; Chau V
    J Biol Chem; 1993 Mar; 268(8):5668-75. PubMed ID: 8383676
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A ubiquitin-proteasome system is responsible for the protection of yeast and human cells against methylmercury.
    Hwang GW; Furuchi T; Naganuma A
    FASEB J; 2002 May; 16(7):709-11. PubMed ID: 11978736
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glucose activation of the yeast plasma membrane H+-ATPase requires the ubiquitin-proteasome proteolytic pathway.
    de la Fuente N; Maldonado AM; Portillo F
    FEBS Lett; 1997 Jul; 411(2-3):308-12. PubMed ID: 9271226
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functions of the DNA damage response pathway target Ho endonuclease of yeast for degradation via the ubiquitin-26S proteasome system.
    Kaplun L; Ivantsiv Y; Kornitzer D; Raveh D
    Proc Natl Acad Sci U S A; 2000 Aug; 97(18):10077-82. PubMed ID: 10963670
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mass spectrometric analysis of the anaphase-promoting complex from yeast: identification of a subunit related to cullins.
    Zachariae W; Shevchenko A; Andrews PD; Ciosk R; Galova M; Stark MJ; Mann M; Nasmyth K
    Science; 1998 Feb; 279(5354):1216-9. PubMed ID: 9469814
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of the G1 to S transition by the ubiquitin pathway.
    DeSalle LM; Pagano M
    FEBS Lett; 2001 Feb; 490(3):179-89. PubMed ID: 11223033
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A yeast Ubc9 mutant protein with temperature-sensitive in vivo function is subject to conditional proteolysis by a ubiquitin- and proteasome-dependent pathway.
    Betting J; Seufert W
    J Biol Chem; 1996 Oct; 271(42):25790-6. PubMed ID: 8824207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.