These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9461598)

  • 41. Carbon monoxide dehydrogenase from Clostridium thermoaceticum: quaternary structure, stoichiometry of its SDS-induced dissociation, and characterization of the faster-migrating form.
    Xia J; Sinclair JF; Baldwin TO; Lindahl PA
    Biochemistry; 1996 Feb; 35(6):1965-71. PubMed ID: 8639680
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 13C NMR characterization of an exchange reaction between CO and CO2 catalyzed by carbon monoxide dehydrogenase.
    Seravalli J; Ragsdale SW
    Biochemistry; 2008 Jul; 47(26):6770-81. PubMed ID: 18589895
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reactivity of carbon monoxide dehydrogenase from Rhodospirillum rubrum with carbon dioxide, carbonyl sulfide, and carbon disulfide.
    Ensign SA
    Biochemistry; 1995 Apr; 34(16):5372-8. PubMed ID: 7727395
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Activation of the nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: kinetic characterization and reductant requirement.
    Ensign SA; Campbell MJ; Ludden PW
    Biochemistry; 1990 Feb; 29(8):2162-8. PubMed ID: 2109635
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CO/CO2 potentiometric titrations of carbon monoxide dehydrogenase from Clostridium thermoaceticum and the effect of CO2.
    Russell WK; Lindahl PA
    Biochemistry; 1998 Jul; 37(28):10016-26. PubMed ID: 9665707
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Pyrene-Triazacyclononane Anchor Affords High Operational Stability for CO
    Contaldo U; Curtil M; Pérard J; Cavazza C; Le Goff A
    Angew Chem Int Ed Engl; 2022 May; 61(21):e202117212. PubMed ID: 35274429
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanism of CO oxidation by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by anions.
    Seravalli J; Kumar M; Lu WP; Ragsdale SW
    Biochemistry; 1995 Jun; 34(24):7879-88. PubMed ID: 7794899
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural insight into metallocofactor maturation in carbon monoxide dehydrogenase.
    Wittenborn EC; Cohen SE; Merrouch M; Léger C; Fourmond V; Dementin S; Drennan CL
    J Biol Chem; 2019 Aug; 294(35):13017-13026. PubMed ID: 31296570
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Over-expression of carbon monoxide dehydrogenase-I with an accessory protein co-expression: a key enzyme for carbon dioxide reduction.
    Inoue T; Takao K; Fukuyama Y; Yoshida T; Sako Y
    Biosci Biotechnol Biochem; 2014; 78(4):582-7. PubMed ID: 25036953
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Initial structure modification of tetrahedral to planar nickel(II) in a nickel-iron-sulfur cluster related to the C-cluster of carbon monoxide dehydrogenase.
    Panda R; Zhang Y; McLauchlan CC; Venkateswara Rao P; Tiago de Oliveira FA; Münck E; Holm RH
    J Am Chem Soc; 2004 May; 126(20):6448-59. PubMed ID: 15149242
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ni(2+) transport and accumulation in Rhodospirillum rubrum.
    Watt RK; Ludden PW
    J Bacteriol; 1999 Aug; 181(15):4554-60. PubMed ID: 10419953
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A methylnickel intermediate in a bimetallic mechanism of acetyl-coenzyme A synthesis by anaerobic bacteria.
    Kumar M; Qiu D; Spiro TG; Ragsdale SW
    Science; 1995 Oct; 270(5236):628-30. PubMed ID: 7570019
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The CO dehydrogenase accessory protein CooT is a novel nickel-binding protein.
    Timm J; Brochier-Armanet C; Perard J; Zambelli B; Ollagnier-de-Choudens S; Ciurli S; Cavazza C
    Metallomics; 2017 May; 9(5):575-583. PubMed ID: 28447092
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Carbon monoxide dehydrogenase from Rhodospirillum rubrum.
    Bonam D; Murrell SA; Ludden PW
    J Bacteriol; 1984 Aug; 159(2):693-9. PubMed ID: 6430875
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nickel in subunit beta of the acetyl-CoA decarbonylase/synthase multienzyme complex in methanogens. Catalytic properties and evidence for a binuclear Ni-Ni site.
    Gencic S; Grahame DA
    J Biol Chem; 2003 Feb; 278(8):6101-10. PubMed ID: 12464601
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of the Ni-Fe-C complex formed by reaction of carbon monoxide with the carbon monoxide dehydrogenase from Clostridium thermoaceticum by Q-band ENDOR.
    Fan CL; Gorst CM; Ragsdale SW; Hoffman BM
    Biochemistry; 1991 Jan; 30(2):431-5. PubMed ID: 1846295
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Different modes of carbon monoxide binding to acetyl-CoA synthase and the role of a conserved phenylalanine in the coordination environment of nickel.
    Gencic S; Kelly K; Ghebreamlak S; Duin EC; Grahame DA
    Biochemistry; 2013 Mar; 52(10):1705-16. PubMed ID: 23394607
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A unified electrocatalytic description of the action of inhibitors of nickel carbon monoxide dehydrogenase.
    Wang VC; Can M; Pierce E; Ragsdale SW; Armstrong FA
    J Am Chem Soc; 2013 Feb; 135(6):2198-206. PubMed ID: 23368960
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO
    Carlson ED; Papoutsakis ET
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28625981
    [TBL] [Abstract][Full Text] [Related]  

  • 60. X-Ray Crystallography of Carbon Monoxide Dehydrogenases.
    Jeoung JH; Martins BM; Dobbek H
    Methods Mol Biol; 2019; 1876():167-178. PubMed ID: 30317481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.