These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9461644)

  • 1. 3DFS: a new 3D flexible searching system for use in drug design.
    Wang T; Zhou J
    J Chem Inf Comput Sci; 1998; 38(1):71-7. PubMed ID: 9461644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of 2D similarity and 3D superposition. Application to searching a conformational drug database.
    Thimm M; Goede A; Hougardy S; Preissner R
    J Chem Inf Comput Sci; 2004; 44(5):1816-22. PubMed ID: 15446841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physicochemical effects in the representation of molecular structures for drug designing.
    Gasteiger J
    Mini Rev Med Chem; 2003 Dec; 3(8):789-96. PubMed ID: 14529498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic superposition of drug molecules based on their common receptor site.
    Kato Y; Inoue A; Yamada M; Tomioka N; Itai A
    J Comput Aided Mol Des; 1992 Oct; 6(5):475-86. PubMed ID: 1474395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacophoric pattern matching in files of three-dimensional chemical structures: use of bounded distance matrices for the representation and searching of conformationally flexible molecules.
    Clark DE; Willett P; Kenny PW
    J Mol Graph; 1992 Dec; 10(4):194-204. PubMed ID: 1476991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential molecular connectivity in data-base fragment searching.
    Kier LB; Hall LH
    Pharm Res; 1989 Jun; 6(6):497-500. PubMed ID: 2762225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A web-based 3D-database pharmacophore searching tool for drug discovery.
    Fang X; Wang S
    J Chem Inf Comput Sci; 2002; 42(2):192-8. PubMed ID: 11911686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of hydrogen-bonds in drug binding.
    Wade RC; Goodford PJ
    Prog Clin Biol Res; 1989; 289():433-44. PubMed ID: 2726808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular design based on 3D pharmacophores. Applications to 5-HT7 receptors.
    Lepailleur A; Bureau R; Lemaître S; Dauphin F; Lancelot JC; Contesse V; Lenglet S; Delarue C; Vaudry H; Rault S
    J Chem Inf Comput Sci; 2004; 44(3):1148-52. PubMed ID: 15154784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intramolecular hydrogen bonding in medicinal chemistry.
    Kuhn B; Mohr P; Stahl M
    J Med Chem; 2010 Mar; 53(6):2601-11. PubMed ID: 20175530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated site-directed drug design: approaches to the formation of 3D molecular graphs.
    Lewis RA
    J Comput Aided Mol Des; 1990 Jun; 4(2):205-10. PubMed ID: 2213065
    [No Abstract]   [Full Text] [Related]  

  • 12. The role and significance of unconventional hydrogen bonds in small molecule recognition by biological receptors of pharmaceutical relevance.
    Tóth G; Bowers SG; Truong AP; Probst G
    Curr Pharm Des; 2007; 13(34):3476-93. PubMed ID: 18220785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aromatic rings act as hydrogen bond acceptors.
    Levitt M; Perutz MF
    J Mol Biol; 1988 Jun; 201(4):751-4. PubMed ID: 3172202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General principles of pharmaceutical solid polymorphism: a supramolecular perspective.
    Rodríguez-Spong B; Price CP; Jayasankar A; Matzger AJ; Rodríguez-Hornedo N
    Adv Drug Deliv Rev; 2004 Feb; 56(3):241-74. PubMed ID: 14962581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular surface comparison. 2. Similarity of electrostatic vector fields in drug design.
    Blaney FE; Edge C; Phippen RW
    J Mol Graph; 1995 Jun; 13(3):165-74, 194-7. PubMed ID: 7577844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational searching using a population-based incremental learning algorithm.
    Long SM; Tran TT; Adams P; Darwen P; Smythe ML
    J Comput Chem; 2011 Jun; 32(8):1541-9. PubMed ID: 21284005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of biological activity profiles using substructural analysis and genetic algorithms.
    Gillet VJ; Willett P; Bradshaw J
    J Chem Inf Comput Sci; 1998; 38(2):165-79. PubMed ID: 9538517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery.
    Fink T; Reymond JL
    J Chem Inf Model; 2007; 47(2):342-53. PubMed ID: 17260980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular recognition: models for drug design.
    Breckenridge RJ
    Experientia; 1991 Dec; 47(11-12):1148-61. PubMed ID: 1765127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Syntheses and energy transfer in multiporphyrinic arrays self-assembled with hydrogen-bonding recognition groups and comparison with covalent steroidal models.
    Balaban TS; Berova N; Drain CM; Hauschild R; Huang X; Kalt H; Lebedkin S; Lehn JM; Nifaitis F; Pescitelli G; Prokhorenko VI; Riedel G; Smeureanu G; Zeller J
    Chemistry; 2007; 13(30):8411-27. PubMed ID: 17645286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.