These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 9463422)

  • 1. Sharp, local synchrony among putative feed-forward inhibitory interneurons of rabbit somatosensory cortex.
    Swadlow HA; Beloozerova IN; Sirota MG
    J Neurophysiol; 1998 Feb; 79(2):567-82. PubMed ID: 9463422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Descending corticofugal neurons in layer 5 of rabbit S1: evidence for potent corticocortical, but not thalamocortical, input.
    Swadlow HA
    Exp Brain Res; 2000 Jan; 130(2):188-94. PubMed ID: 10672472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of single VB thalamocortical impulses on barrel columns of rabbit somatosensory cortex.
    Swadlow HA; Gusev AG
    J Neurophysiol; 2000 May; 83(5):2802-13. PubMed ID: 10805678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of VPM afferents on putative inhibitory interneurons in S1 of the awake rabbit: evidence from cross-correlation, microstimulation, and latencies to peripheral sensory stimulation.
    Swadlow HA
    J Neurophysiol; 1995 Apr; 73(4):1584-99. PubMed ID: 7643169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thalamocortical control of feed-forward inhibition in awake somatosensory 'barrel' cortex.
    Swadlow HA
    Philos Trans R Soc Lond B Biol Sci; 2002 Dec; 357(1428):1717-27. PubMed ID: 12626006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efferent neurons and suspected interneurons in S-1 vibrissa cortex of the awake rabbit: receptive fields and axonal properties.
    Swadlow HA
    J Neurophysiol; 1989 Jul; 62(1):288-308. PubMed ID: 2754479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efferent neurons and suspected interneurons in second somatosensory cortex of the awake rabbit: receptive fields and axonal properties.
    Swadlow HA
    J Neurophysiol; 1991 Oct; 66(4):1392-409. PubMed ID: 1761989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast-spike interneurons and feedforward inhibition in awake sensory neocortex.
    Swadlow HA
    Cereb Cortex; 2003 Jan; 13(1):25-32. PubMed ID: 12466212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spike timing and synaptic dynamics at the awake thalamocortical synapse.
    Swadlow HA; Bezdudnaya T; Gusev AG
    Prog Brain Res; 2005; 149():91-105. PubMed ID: 16226579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efferent neurons and suspected interneurons in motor cortex of the awake rabbit: axonal properties, sensory receptive fields, and subthreshold synaptic inputs.
    Swadlow HA
    J Neurophysiol; 1994 Feb; 71(2):437-53. PubMed ID: 8176419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efferent neurons and suspected interneurons in S-1 forelimb representation of the awake rabbit: receptive fields and axonal properties.
    Swadlow HA
    J Neurophysiol; 1990 Jun; 63(6):1477-98. PubMed ID: 2358887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential Excitation of Distally versus Proximally Targeting Cortical Interneurons by Unitary Thalamocortical Bursts.
    Hu H; Agmon A
    J Neurosci; 2016 Jun; 36(26):6906-16. PubMed ID: 27358449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Somatosensory cortical efferent neurons of the awake rabbit: latencies to activation via supra--and subthreshold receptive fields.
    Swadlow HA; Hicks TP
    J Neurophysiol; 1996 Apr; 75(4):1753-9. PubMed ID: 8727411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative contributions of thalamic reticular nucleus neurons and intrinsic interneurons to inhibition of thalamic neurons projecting to the motor cortex.
    Ando N; Izawa Y; Shinoda Y
    J Neurophysiol; 1995 Jun; 73(6):2470-85. PubMed ID: 7666153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circuit dynamics and coding strategies in rodent somatosensory cortex.
    Pinto DJ; Brumberg JC; Simons DJ
    J Neurophysiol; 2000 Mar; 83(3):1158-66. PubMed ID: 10712446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Barrel cortex microcircuits: thalamocortical feedforward inhibition in spiny stellate cells is mediated by a small number of fast-spiking interneurons.
    Sun QQ; Huguenard JR; Prince DA
    J Neurosci; 2006 Jan; 26(4):1219-30. PubMed ID: 16436609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Receptive-field construction in cortical inhibitory interneurons.
    Swadlow HA; Gusev AG
    Nat Neurosci; 2002 May; 5(5):403-4. PubMed ID: 11967546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic discharge patterns and somatosensory inputs for neurons in raccoon primary somatosensory cortex.
    Istvan PJ; Zarzecki P
    J Neurophysiol; 1994 Dec; 72(6):2827-39. PubMed ID: 7897492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation in thalamic barreloid and cortical barrel neurons to periodic whisker deflections varying in frequency and velocity.
    Khatri V; Hartings JA; Simons DJ
    J Neurophysiol; 2004 Dec; 92(6):3244-54. PubMed ID: 15306632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex.
    Porter JT; Johnson CK; Agmon A
    J Neurosci; 2001 Apr; 21(8):2699-710. PubMed ID: 11306623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.